
02.Physical World, Units and Measurements

Physics Smart Booklet

Theory + NCERT MCQs + Topic Wise Practice MCQs + NEET PYQs

Physical avantity

describe Laws of Physics QUANTILIES WHICH CAN be instrument and used to medisured by an

are physical avantities Physical augneticy =

Numerical value (N) × Unit (U)

TYPES

FUNDAMENTAL AUGNELIES do Not depend upon other quantities:

(1) Length (2) Mass (3) Time (5) Amount of Substance (6) Electric current (7) Luninous Intensity (4) Temperature

Primary or fundamental Dimensional formula

formed by combining more - Derived quantities are than one fundamental Physical avantities

Some Derived avantities - Area. Volume, velocity and acceleration are

intensity = (cd).
(7) amount of matter

= [mor] =

= (1). (6) Luminous

Conversion of Units From are System to another

Two Supplementary S.I units are:

(1) Radian(Plane angle)

(2) Steradian (Solid angle). (radius)2

(2) Measurements consists of a numerical value along with reference standard used for measurements. (1) Unit is defined as the

a relevant unit.

(3) Example: meter, Newton.

Joule. Seconds etc.

FPS (FL. POUND. S) CGS (M. 9M. S)

SOME OTHER UNITS

MKS (M. kg. S)

S.I UNIES

accepted internationally - S.I Units of time is 'Sec' - The System of units

is the example of S.I System

(1) mass:- 1 quintat = 100 kg, 1 km = 1000 kg 12 keyabi:- 1 tight year = 9.46 x 1015 m 1 an = 1.46 x 1011 m 1 (3) Temperature: 0 c = 273 K 10 F = 255.928 K

Dimensional Analysis

expression for the unit of a physical avantity in terms of the fundamental avantities Dimension formula is the

Dimensional formula is expressed in terms of Power of M. L and T.

PRINCIPLE OF HOMOGENITY

Principle of homogeneity States that the dimension of each term on both sides of dimensional equation should be same.

Secondary or derived dimensional formula

(ii) example: (1) (Speed) = (i) Other than fundame-Ntal formula all other dimensional formula (2) [Acceleration] = (MoLJT2]

are derived

dimensional formulas:

FUNDAMENTAL

There are seven

Absolute Error. = TYPES OF ERROR

medsured value

true value

(MoL1T-1),

(1) MaSS = (M). (2) Length = (L). (3) Time = (T). (4) Temperature = (K) or (Q). (5) Electric Current

RULE OF ROUNDING OFF

All Non – Zero digits are Significant

4.125 - 4 Sf: 123 - 3 Sf

-Rules of Rounding off the uncertain digits (UP to 3 Significant Figures)

Leading zeroes i.e

Significant Placed

are vever

to the left of the

N2 = Numerical Part of

one system

N1 = Numerical Part of $N_2 = N_1 \begin{bmatrix} M_1 \\ M_2 \end{bmatrix}^2 \begin{bmatrix} L_1 \\ L_2 \end{bmatrix}^{\mathbb{D}} \begin{bmatrix} T_1 \\ T_2 \end{bmatrix}$

then, preceding digit +1 If digit > 5

0.04030 - 4 SF

0.0403 - 3 SF:

If digit <5 then. Preceding digit remain same

between the Non

400.001 - 4 SF All zero lie in

measured values about the The Number of digits in the

correctivess are known as

Significant rigures.

(SIGNIFICANT FIGURES)

KNOW YOUR LCROS GNOTHER SYSTEM

zero digits are

(b) Preceding digit +1 when rounded off digit is even .. If insignificant digit = 5: rounded off digit is odd remain same when (a) Preceding digit

VERNIER CALLIPERS

Precision is the range value during several of variation of true

Accuracy is degree of closeness of measured value to the true value. Shous that how closely the results with the

Standard value.

observation

PRECCISION

ACCURACY

Medsurments

Units And

Least Count (L.C) = 1 MSD - 1 VSD: MSD = main Scale division: VSD = Vernier Scale division

measurement is called

It is defined as the power of 10 which is closest to its magnitude

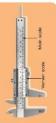
N = N * 10x: x = order of magnitude.

The uncertainty in

ERRORS

ORDER OF MAGNITUDE

Error = true value -


medsured value

displacement of screw

Pitch =

no. of rotations

ري دي: Pitch

The second state of the se

total no. of divisions

Total reading = Main Scale Reading +(Vernier Coincidence * least Count)

Zero error = N × L.C N = No. of circular coincides with the

> Zero error = N × L.C. N = No. of coinciding

 $\Delta\alpha_{_{mean}} = \left|\Delta\alpha_{_{1}} + \left|\Delta\alpha_{_{2}}\right| + \dots + \left|\Delta\alpha_{_{n}}\right|$

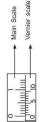
Mean absolute errors

L.C = LEGISE COUNT OF GIN

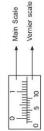
INStrunment.

Relative error

 $\Delta \alpha_{\mathsf{mean}}$


 α_{mean}

L.C = LEGIST COUNT


reference line

POSITIVE ZERO ERROR

POSITIVE ZERO ERROR

NEGATIVE ZERO ERROR

Percentage of true value

Percentage error

 $\Delta\alpha_{\text{mean}} \times 100$

α_{mean}

medisured value and the

true value as a is difference the

Percentage error.

VEGAITIVE ZERO ERROR

Vegative Zero Error

Constants and Pure Numbers have infinite Significant figures:

38.3 × 104 - 3 Sf: 38.30 × 10-9 - 4 Sf

0.043010 - 5 SF

arter decimal 4.00 - 3 St:

when they appear

Trailing zero digits are Significant only

e is not considered Order of magnitud

Positive Zero Error

PHYSICAL WORLD

Physics

Physics deals with the study of the basic laws of nature and their manifestation in different phenomena. The basic laws of physics are universal and are applied in widely different contexts and conditions.

Physics, Technology and Society

- Science, Technology and Society have strong relationships among one on other. Science is the mother of technology and both of them are the reasons for the creation and development of the society.
- Science and technology issues are actually discussed worldwide today. Progress in this has led to produce the ability to integrate different types of physical products.
- Physics is a basic discipline in the category of natural sciences which also includes other disciplines like Chemistry and Biology. The word physics comes from a Greek word meaning nature.

Fundamental forces in nature:

There are four fundamental forces in nature. They are the 'gravitational force', the 'electromagnetic force', the 'strong nuclear force', and the 'weak nuclear force'. Unification of different forces/domains in nature is a basic quest in physics.

Nature of physical laws:

- (i) The physical quantities that remain unchanged in a process are called conserved quantities. Some of the general conservation laws in nature include the laws of conservation of mass, energy, linear momentum, angular momentum, charge, etc. Some conservation laws are true for one fundamental force but not for the other.
 - (ii) Conservation laws have a deep connection with symmetries of nature. Symmetries of space and time, and other types of symmetries play a central role in modern theories of fundamental forces in nature.

1.Some physicists from different countries of the world and their major contributions

Name	Major contribution /Discovery	
Archimedes	Principle of buoyancy; Principle of the lever	Origin Greece
Galileo Galilei	Law of inertia	Italy
Christiaan Huygens	Wave theory of light	Holland
Isaac Newton	Universal law of gravitation; Laws of motion;	
	Reflecting telescope	U.K.
Michael Faraday	Laws of electromagnetic induction	U.K.
James Clerk Maxwell	Electromagnetic theory; Light - an electromagnetic way	e U.K.
Heinrich Rudolf Hertz	Generation of electromagnetic waves	Germany
J.C. Bose	Short radio waves	India
W.K.Roentgen	X-rays	Germany
J.J. Thomson	Electron	U.K.
Marie sklodowska Curie	Discovery of radium and polonium;	
	Studies on natural radio activity	poland
Albert Einstein	Explanation of photoelectric effect; Theory of relativity	Germany
Victor Francis Hess	Cosmic radiation	Austria
R.A. Millikan	Measurement of electronic charge	U.S.A.
Ernest Rutherford	Nuclear model of atom	New Zealand
Niels Bohr	Quantum model of hydrogen atom	Denmark
C.V. Raman	Inelastic scattering of light by molecules	India
Louis Victor de Broglie	Wave nature of matter	France
M.N. Saha	Thermal ionisation	India
S.N. Bose	Quantum statistics	India

Wolfgang Pauli	Exclusion principle	Austria
Enrico Fermi	Controlled nuclear fission	Italy
Werner Heisenberg	Quantum mechanics; Uncertainity principle	Germany
Paul Dirac	Relativistic theory of electron; Quantum statistics	U.K.
Edwin Hubble	Expanding universe	U.S.A.
Ernest Orlando Lawrence	Cyclotron	U.S.A.
James Chadwick	Neutron	U.K.
Hideki Yukawa	Theory of nuclear forces	Japan
Homi Jehangir Bhabha	Cascade process of cosmic radiation	India
Lev Davidovich Landau	Theory of condensed matter; Liquid helium	Russia
S.Chandrasekhar	Chandrasekhar limit, structure and evolution of stars	India
John Bardeen	Transistors; Theory of super conductivity	U.S.A.
C.H. Townes	Maser; Laser	U.S.A.
Abdus Salam	Unification of weak and electromagnetic interactions	Pakistan

2) Link between technology and physics

TechnologyScientific principle (s)Steam engineLaws of thermodynamicsNuclear reactorControlled nuclear fission

Radio and Television Generation, propagation and detection of electromagnetic waves

Computers Digital logic

Lasers Light amplification by stimulated emission of radiation

Production of ultra high Superconductivity

magnetic fields

Rocket propulsion Newton's laws of motion

Electric generator Faraday's laws of electromagnetic induction

Hydroelectric power Conversion of gravitational potential energy into electrical energy

Aeroplane Bernoulli's principle in fluid dynamics

Particle accelerators Motion of charged particles in electromagnetic fields

Sonar Reflection of ultrasonic waves
Optical fibres Total internal reflection of light
Non-reflecting coatings Thin film optical interference
Electron microscope Wave nature of electrons
Photocell Photoelectric effect

Fusion test reactor (Tokamak) Magnetic confinement of plasma Giant Metrewave Radio Detection of cosmic radio waves

Telescope (GMRT)

Bose-Einstein condensate Trapping and cooling of atoms by laser beams and

magnetic fields

Units and Measurements

2.1 Units

Fundamental quantities

The physical quantities which are independent of other quantities are called fundamental quantities.

Example: Mass, length, time etc.

Quantities are those which can be measured using an instrument. Any physical phenomenon or observation that can be measured using an instrument is called **quantity.**

Derived quantities

The physical quantities which are derived from fundamental quantities are known as derived quantities.

Example: Density, volume, speed, force etc.

The SI system of units

In 1971, General conference of weights and measures introduced a logical and rationalized system of units known as international system of units, abbreviated as SI in all languages. In this system, there are seven fundamental quantities and two supplementary quantities.

Fundamental quantities and their units

S. No.	Physical quantity	Unit	Symbol
1.	Length	Metre	m
2.	Mass	Kilogram	Kg
3.	Time	Second	s
4.	Temperature	Kelvin	K
5.	Electric current	Ampere	A
6.	Luminous intensity	Candela	Cd
7.	Amount of	Mole	mol
	substance		

Supplementary quantities and their units

S. No.	Physical quantity	Unit	Symbol
1.	Plane angle	radian	rad
2.	Solid angle	Steradian	Sr

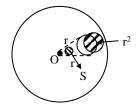
Rules of writing unit

- 1. In writing the unit of any quantity, small letters must be used for symbol of unit. Eg., m, ms⁻¹ etc.
- 2. Symbols are not followed by full stop.
- 3. If any unit is named after a scientist, its symbol should be initial capital letter. Eg., N(newton), W(watt), K(kelvin) etc.
- 4. The full name of a unit always begins with a small letter, even if it is named after a scientist. Eg., 5 N or 5 newton.
- 5. Symbols do not take plural form.

Some practical units

There are some practical units which are simultaneously used with SI units.

- (i) $1 \text{ fermi} = 10^{-15} \text{ m}$
- (ii) 1 angstrom (\mathring{A}) = 10^{-10} m
- (iii) 1 nanometer (nm) = 10^{-9} m
- (iv) 1 micron (μ m) = 10^{-6} m
- (v) 1 light year = 9.46×10^{15} m
- (vi) 1 astronomical unit (AU) = 1.496×10^{11} m
- (vii) 1 parsec = 3.03×10^{18} m
- (viii) $1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$
- (ix) 1 quintal = 100 kg
- (x) 1 tonne = 1000 kg
- (xi) 1 lunar month = 27.3 days
- (xii) 1 Shake = 10^{-8} s


The two supplementary SI units are defined as follows

(i) Radian (rad): 1 radian is the angle subtended at the centre of a circle by an arc equal in length to the radius of the circle.

$$\theta = 1 \text{ rad}$$
 $l = r$

Thus,
$$\theta = \frac{Arc}{radius} = \frac{r}{r} = 1 \text{ rad}$$

(ii) Steradian (Sr): 1 steradian is the solid angle subtended at the centre of a sphere by a surface of the sphere equal in area to that of a square, having each side equal to the radius of sphere.

Thus, $\omega = \frac{\text{Surface area}}{(\text{Radius})^2} = \frac{r^2}{r^2} = 1 \text{ Sr}$

2.2 Dimensions of a physical quantity

The dimensions of a physical quantity are the powers to which the unit of fundamental quantities are raised to represent that quantity.

Dimensions of fundamental quantities

S. No.	Quantity	Dimensional formula
1.	Length	[L]
2.	Mass	[M]
3.	Time	[T]
4.	Electric current	[A]
5.	Temperature	[K]
6.	Luminous intensity	[Cd]
7.	Amount of substance	[mol]

The supplementary quantities i.e., plane angle and solid angle have no dimensions.

Dimensional equation

The equation obtained by equating a physical quantity with its dimensional formula is called dimensional equation of the given physical quantity. Example: Force = [MLT⁻²]

∴ Dimensions of force are 1, 1 and –2 in mass, length and time respectively. Dimensional formula of force is [MLT⁻²].

"Force = $[MLT^{-2}]$ " is called dimensional equation.

Dimensional formulas of some physical quantities

S. No.	Physical quantity	Relation with other quantities	Unit	Dimensional formula
1.	Force	Mass × acceleration	N	[MLT ⁻²]
2.	Work	Force × displacement	J	$[ML^2T^{-2}]$
3.	Pressure	Force/area	Nm^{-2}	$[ML^{-1}T^{-2}]$
4.	Force constant	Force/length	Nm^{-1}	$[ML^0T^{-2}]$
5.	Gravitational constant, G	$Force \times \frac{dis tan ce^2}{mass^2}$	Nm ² kg ⁻²	$[M^{-1}L^3T^{-2}]$
6.	Impulse	Force × time	Ns	$[MLT^{-1}]$
7.	Stress	Force/area	Nm^{-2}	$[ML^{-1}T^{-2}]$

	~		
Physics	Smart	Rool	zlet
I Hybres	Dillat	DUU	XIC.

8.	Strain	Change in dimension original dimension	_	$[M^0L^0T^0]$
9.	Modulus of elasticity	Stress/strain	Nm^{-2}	$[ML^{-1}T^{-2}]$
10.	Surface tension	Force/length	Nm^{-1}	$[ML^0T^{-2}]$
11.	Coefficient of viscosity	$\frac{\text{Force} \times \text{dis} \tan \text{ce}}{\text{Area} \times \text{velocity}}$	Ns m ⁻²	$[\mathrm{ML}^{-1}\mathrm{T}^{-1}]$
12.	Latent heat	Heat Mass	J kg ⁻¹	$[M^0L^2T^{-2}]$
13.	Electric charge	Current × time	С	$[M^0L^0TA]$
14.	Electric potential	Work/charge	JC ⁻¹ or V	$[\mathbf{M}\mathbf{L}^2\mathbf{T}^{-3}\mathbf{A}^{-1}]$
15.	Resistance	Potential/current	$ohm(\Omega)$	$[ML^2T^{-3}A^{-2}]$
16.	Capacitance	$\frac{\text{Charge}}{\text{Potential}} = \frac{\text{Current} \times \text{time}}{\text{Potential}}$	Farad (F)	$[M^{-1}L^{-2}T^4A^2]$
17.	Inductance, L	Potential Current / time	Henry (H)	$[ML^2T^{-2}A^{-2}]$
18.	Magnetic field, B	Force Charge × velocity	Tesla (T)	$[ML^0T^{-2}A^{-1}]$
19.	Planck's constant, h	Energy freqency	Js	$[ML^2T^{-1}]$

Four types of physical quantities

- (1) Dimensional constants: These are the physical quantities whose values are constant but they possess dimensions. Eg., Gravitational constant (G), Stefan's constant (σ) etc.
- (2) Dimensional variables: These are the quantities whose values are variable and they possess dimensions. Eg., Volume, acceleration, force etc.
- (3) Dimensionless constants: These are the physical quantities whose values are constant but they do not possess dimensions. Eg., 1, 2, 3, π etc.
- (4) Dimensionless variables: These are quantities whose values are variable and they do not have dimensions. Eg., Angle, strain, relative density etc.

Principle of homogeneity of dimensions

According to this principle, the dimensions of all the terms occurring on both sides of the equations must be same.

Uses of Dimensional Analysis

(1) Conversion of unit of a derived physical quantity from one system of unit to another system of unit is based on the fact that product of numerical value contained in and the unit of physical quantity remains constant i.e., larger unit has smaller magnitude.

or

 $\mathbf{Q} = \mathbf{n}_1 \mathbf{u}_1 = \mathbf{n}_2 \mathbf{u}_2$

where n_1 , n_2 are numeric values and u_1 , u_2 are the two units of measurement of the physical quantity Q.

- (2) To check the correctness of a physical relation. This is based on the principle of homogeneity of dimensions.
- (3) Deriving the relation among the physical quantities: We can derive an expression of a physical quantity if we know the various factors on which it depends, by using the principle of homogeneity.

Let physical quantity X depends on other quantities P, Q and R, then we can write $X = K P^a Q^b R^c$.

Where K is a dimensionless constant, whose value can be determined by experiment or otherwise, but not by dimensions. By equating dimensions of both sides of equation, we can get required relation among the quantities.

Limitations of the dimensional analysis

- 1. By the method of dimensions, we cannot get any information about the dimensionless constant.
- 2. If a physical quantity depends on more than three factors, all having dimensions, the formula cannot be derived.
- 3. We cannot derive the formulas containing trigonometric functions, exponential functions, logarithmic functions etc.
- 4. The method of dimensions can't be used to derive the relation like $S = ut + \frac{1}{2}at^2$. [i.e., equations containing more than one term with + or symbol on right side].
- 5. It gives no information whether a physical quantity is a scalar or vector.

Order of magnitude

It gives an idea about how big or how small a magnitude is. A number N can be expressed as:

$$N = n \times 10^x$$

If $0.5 < n \le 5$, then N will be the order of magnitude of x.

Illustrations

1. The speed of light c, gravitational constant G and Planck's constant h are taken as the fundamental units in a system. Find the dimensional formulas of length and time in this new system of units.

Solution

$$c = [LT^{-1}] \qquad ... (i)$$

$$G = [M^{-1}L^{3}T^{-2}] \qquad ... (ii)$$

$$h = [ML^{2}T^{-1}] \qquad ... (iii)$$
From equation (i),
$$c^{3} = [L^{3} T^{-3}]$$
From equations (ii) and (iii)
$$Gh = [L^{5}T^{-3}]$$

$$\therefore \frac{Gh}{c^{3}} = L^{2} \Rightarrow L = G^{\frac{1}{2}} h^{\frac{1}{2}} c^{\frac{-3}{2}}$$

$$\frac{1}{c^3} = L \implies L = G^{-1} \text{ II}$$

$$Gh = [L^5 \text{ T}^{-3}]$$

$$c^5 = [L^5 \text{ T}^{-5}]$$

$$\frac{Gh}{c^5} = T^2 \Rightarrow T = G^{\frac{1}{2}} h^{\frac{1}{2}} c^{\frac{-5}{2}}$$

2. Check the equation $v^2 = u^2 + 2as$ is dimensionally correct or not. [Symbols have their usual meanings]

Solution

$$\begin{split} v^2 &= u^2 + 2as \\ \text{Dimensions of LHS} &= [LT^{-1}]^2 = [L^2T^{-2}] \\ \text{Dimensions of RHS} &= [LT^{-1}]^2 + [LT^{-2}] \ [L] = [L^2 \ T^{-2}] + [L^2 \ T^{-2}] \\ &= [L^2 \ T^{-2}] \\ &\qquad \qquad \ldots \text{(ii)} \end{split}$$

From (i) and (ii) it is clear that the given equation is dimensionally correct.

3. If the centripetal force depends on the mass (m), velocity (v) and radius of path (r) for an object, find the formula for it.

Solution

Let force
$$F = k \text{ (mass)}^a \text{ (velocity)}^b \text{ (radius)}^c$$

Writing dimensions on both the sides,

$$[MLT^{-2}] = k [M]^a [LT^{-1}]^b [L]^c$$

 $[M^1L^1T^{-2}] = k [M^a L^{b+c} T^{-b}]$

Comparing the powers on both the sides

$$a = 1$$
, $b + c = 1$ and $-b = -2$

$$b = 2 \Rightarrow 2 + c = 1 \Rightarrow c = -1$$

$$\therefore$$
 a = 1, b = 2, c = -1

$$\therefore$$
 F = k m¹ v² r⁻¹ or F = k $\left(\frac{mv^2}{r}\right)$, k is a dimensionless constant.

4. The value of gravitation constant is $G = 6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$ in SI units. Convert it into units of CGS system.

Solution

$$G = [M^{-1} L^{3} T^{-2}]$$
Let $n_{1} \lceil M^{-1} L_{1}^{3} T_{1}^{-2} \rceil = n_{2} \lceil M_{2}^{-1} L_{2}^{3} T_{2}^{-2} \rceil$

Let 1 corresponds to SI system and 2 to CGS system

$$n_1 = 6.67 \times 10^{-11}$$
, $M_1 = 1$ kg, $L_1 = 1$ m, $T_1 = 1$ s, $M_2 = 1$ g = 10^{-3} kg, $L_2 = 1$ cm = 10^{-2} m and $T_2 = 1$ s

Now,
$$n_2 = n_1 \left[\frac{M_1}{M_2} \right]^{-1} \left[\frac{L_1}{L_2} \right]^3 \left[\frac{T_1}{T_2} \right]^{-2} = 6.67 \times 10^{-11} \left[\frac{1 \text{ kg}}{10^{-3} \text{ kg}} \right]^{-1} \left[\frac{1 \text{ m}}{10^{-2} \text{ m}} \right]^3 \left[\frac{1 \text{ s}}{1 \text{ s}} \right]^{-2}$$

$$\therefore n_2 = 6.67 \times 10^{-11} [10^{-3}] [10^6] [1] = 6.67 \times 10^{-8}$$

Thus, value of G in CGS system is 6.67×10^{-8} dyne cm 2 g $^{-2}$.

5. The velocity v of a particle depends upon the time t according to the equation $v = a + bt + \frac{c}{d+t}$. Write the dimensions of a, b, c and d.

Solution

From principle of homogeneity, [a] = [v]

or
$$[a] = [LT^{-1}]$$

$$[bt] = [v]$$

or
$$[bT] = [LT^{-1}]$$

or
$$[b] = [LT^{-2}]$$

$$[d] = [t]$$

or
$$[d] = [T]$$

$$\left[\frac{c}{d+t}\right] = [v]$$

$$[c] = [v] [d+t] = [LT^{-1}] [T]$$

$$[c] = [L]$$

Aliter

$$[a] = [v] = LT^{-1}$$

$$[bt] = [v] = LT^{-1}$$

$$\therefore b = \left[\frac{LT^{-1}}{T^0}\right] = [LT^{-2}]$$

$$V = \frac{c}{d} = \frac{L}{T}$$

$$\therefore$$
 C = [L]

$$D = [T]$$

6. The frequency (f) of a stretched string depends upon the tension F (force, length l of the string and the mass per unit length μ of string. Derive the formula for frequency.

Solution

Let
$$f = k F^a l^b \mu^c$$

$$[T^{-1}] = k [MLT^{-2}]^a [L]^b [ML^{-1}]^c$$

$$[T^{-1}] = k [M^{a+c} L^{a+b-c} T^{-2a}]$$

Comparing the powers a + c = 0, a + b - c = 0, -2a = -1

Solving these equations we get
$$a = +\frac{1}{2}$$
, $b = -1$ and $c = \frac{-1}{2}$

$$\therefore \ f = k \ F^{\frac{1}{2}} \ \mathit{l}^{-1} \ \mu^{\frac{-1}{2}} \qquad \qquad \text{or} \qquad \quad f = k \frac{1}{\mathit{l}} \sqrt{\frac{F}{\mu}} \ , \ \text{where} \ k \ \text{is a dimensionless constant}.$$

7. Write the dimensions of a and b in the relation
$$P = \frac{b - x^2}{at}$$

Where P is power, x is distance and t is time

Solution

$$[x] = [L] \Rightarrow [x^2] = [L^2]$$

 \therefore [b] = [L²] [From principle of homogeneity]

$$[P] = [ML^2T^{-3}]$$

[at] =
$$\frac{[b-x^2]}{[P]}$$
 = $\frac{[L^2]}{[ML^2T^{-3}]}$ = $[M^{-1}T^3]$

$$[a] = [M^{-1} T^2]$$

8. Find the dimensions of $\frac{L}{R}$ where L is inductance and R is the resistance.

Solution

We know that
$$[L] = [ML^2T^{-2}A^{-2}]$$
 and $[R] = [ML^2T^{-3}A^{-2}]$

$$\therefore \left[\frac{L}{R}\right] = [T]$$

$$\therefore$$
 Dimensions of $\frac{L}{R}$ is same as that of time.

9. Express 1 parsec in terms of meter. Write its order of magnitude.

Solution

1 parsec =
$$3.08 \times 10^{16}$$
 m; Here $0.5 < 3.08 < 5$ \therefore order of magnitude = 16

a. Write the order of magnitude of the following measurements

Solution

(i)
$$45,710,000 \text{ m} = 4.571 \times 10^7 \text{ m}$$

$$0.5 < 4.571 < 5$$
 : order of magnitude = 7

(ii)
$$92,820,000 = 0.92 \times 10^8 \text{ m}$$

$$0.5 < 0.92 < 5$$
 \therefore order of magnitude = 8

(iii)
$$0.00000532 \text{ kg} = 0.532 \times 10^{-5}$$

$$0.5 < 0.532 < 5$$
 \therefore order of magnitude = -5

2.3 Significant Figures

Significant figures in the measured value of a physical quantity tell the number of digits in which we have confidence. Larger the number of significant figures obtained in a measurement, greater is the accuracy of the measurement.

"All accurately known digits in a measurement plus the first uncertain digit together form significant figures".

For example, when we measure the length of a straight line using a meter scale and it lies between 8.6 cm and 8.7 cm, we may estimate it as 8.64 cm. This expression has three significant figures, out of these 8 and 6 are precisely known but last digit 4 is only approximately known.

Rules for counting significant figures

For counting significant figures, we use the following rules:

- **Rule 1:** All non-zero digits are significant. For example x = 2567 has four significant figures.
- **Rule 2:** The zeroes appearing between two non-zero digits are counted in significant figures. For example 6.028 has 4 significant figures.
- **Rule 3:** The zeroes occurring to the left of last non-zero digit are NOT significant. For example 0.0042 has 2 significant figures.
- **Rule 4:** In a number without decimal, zeroes to the right of non-zero digit are NOT significant. However when some value is recorded on the basis of actual measurement the zeroes to the right of non-zero digit become significant. For example L=20 m has two significant figures but x=200 has only one significant figure.
- **Rule 5:** In a number with decimal, zeroes to the right of last non-zero digit are significant. For example x = 14.00 has four significant digits.
- **Rule 6:** The powers of ten are NOT counted as significant digit. For example 1.4×10^7 has only two significant digits 1 and 4.
- **Rule 7 :** Change in the units of measurement of a quantity does not change the number of significant figures. For example, suppose distance between two stations is 4067 m. It has four significant figures. The same distance can be expressed as $4.067 \,\mathrm{km}$ or $4.067 \times 10^5 \,\mathrm{cm}$. In all these expressions, number of significant digits is four.

See the following table

ce the following tuble					
Measured value	Number of significant digits	Rule number			
12376	5	1			
6024.7	5	2			
0.071	2	3			
410 m	3	4			
720	2	4			
2.40	3	5			
1.6×10^{-17}	2	6			

Rounding off a digit

Certain rules are applied in order to round off the measurement.

Rule 1: If the number lying to the right of digit to be rounded off is less than 5, then the rounded digit is retained as such. However if it is more than 5, then the digit to be rounded is increased by 1.

For example, x = 6.24 is rounded off to 6.2 to two significant digits and x = 8.356 is rounded off to 8.36 to three significant digits.

Rule 2: If the digit to be dropped is 5 followed by digits other than zero then the preceding digit is increased by 1. For example, x = 14.252 is rounded off to x = 14.3 to three significant digits.

Rule 3: If the digit to be dropped is simply 5 or 5 followed by zero, then the preceding digit is left unchanged if it is even.

For example, x = 6.250 or x = 6.25 becomes x = 6.2 after rounding off to two significant digits.

Rule 4 : If the digit to be dropped is 5 or 5 followed by zero, then the preceding digit is raised by one if it is odd. For example, x = 6.350 or x = 6.35 becomes x = 6.4 after rounding off to two significant digits.

See the following table

Measured value	After rounding off to three significant digits	Rule number
7.364	7.36	1
7.367	7.37	1
8.3251	8.33	2
9.445	9.44	3
9.4450	9.44	3
15.75	15.8	4
15.7500	15.8	4

Algebraic operations with significant figures

In addition, subtraction, multiplication or division, inaccuracy in the measurement of any one variable affects the accuracy of final result. Hence, in general, the final result has significant figures according to the rules given below.

(i) **Addition and Subtraction:** The number of decimal places in the final result (of any of these two operations) has to be equal to the SMALLEST NUMBER OF DECIMAL PLACES in any of the terms involved in calculation.

Example: $1.2 + 3.45 + 6.789 = 11.439 \approx 11.4$

Here, the least number of significant digits after the decimal is one. Hence the result will be 11.4 (when rounded off to smallest number of decimal places).

Example: $12.63 - 10.2 = 2.43 \approx 2.4$

(ii) **Multiplication and Division:** In these operations, the number of significant figures in the result is same as the SMALLEST NUMBER OF SIGNIFICANT FIGURES in any of the factors.

Example: $1.2 \times 1.3 = 1.56 \approx 1.6$

The least number of significant digits on the measured values is 2. Hence the result is 1.6 (when rounded off to smallest number of significant digits)

Example: $1.2 \times 36.72 = 44.064 \approx 44$

Example: $\frac{1100 \text{ ms}^{-1}}{10.2 \text{ ms}^{-1}} = 107.8431 \approx 108$

2.4 Errors in measurement

"Resolution" stands for least count or the minimum reading which an instrument can read.

Accuracy: An instrument is said to be accurate if the physical quantity measured by it resembles very closely to its true value.

Precision: An instrument is said to have high degree of precision, if the measured value remains unchanged, howsoever, large number of times it may have been repeated.

There are many causes of errors in measurement. Errors may be due to instrumental defects, ignoring certain facts, carelessness of experimenter, random change in temperature, pressure, humidity, etc. When an experimentar tries to reach accurate value of measurement by doing large number of experiments, the mean of a large number of the results repeated experiments is close to the true value.

Calculation of Magnitude of Errors

(i) True value: If a_1 , a_2 , a_3 a_n are the observed values of a measurement, then true value of measurement is the mean of these observed values.

$$\therefore \ a_{\text{true}} = a_{\text{mean}} = a_0 = \frac{a_1 + a_2 + a_3 + ... + a_n}{n} = \frac{1}{n} \ \sum_{i=1}^{n} a_i$$

(ii) Absolute error: The absolute errors in various individual measured values are found by subtracting the observed value from true value. Thus,

The absolute error may be positive or negative or zero.

(iii) Mean absolute error: The arithmetic mean of the magnitudes of different values of absolute errors is known as the mean absolute error

$$\therefore \text{ Mean absolute error is } \Delta a_{\text{mean}} = \frac{|\Delta a_1| + |\Delta a_2| + |\Delta a_3| + \dots + |\Delta a_n|}{n}$$

 Δa_{mean} is also represented as $\overline{\Delta a}$

The final result of a measurement can be written as $a = a_0 \pm \overline{\Delta a}$

This implies that value of 'a' is likely to lie between $a_0 + \overline{\Delta a}$ and $a_0 - \overline{\Delta a}$

(iv) Relative error or fraction error: The ratio of the mean value of absolute error to the true value is known as the 'mean relative error'.

$$\therefore \qquad \text{Mean relative error} = \frac{\text{Mean absolute error}}{\text{Mean value of measurement}} = \frac{\overline{\Delta a}}{a_0}$$

When expressed in terms of percentage, relative error is called "relative percentage error". Hence

Percentage error =
$$\frac{\Delta a_{\text{mean}}}{a_{\text{mean}}} \times 100 = \frac{\overline{\Delta a}}{a_0} \times 100$$

Propagation of Errors

Suppose we want to get the volume of a sphere, $v = \frac{4}{3}\pi r^3$. This involves multiplication of radius three times. The

measurement of radius has some error, then what will be error in calculating the volume of sphere? The error in final result depends on the individual measurement as well as the mathematical operations involved in calculating the result. To calculate the net error in the result, we should study the propagation of errors in the several mathematical operations.

(1) Error in addition

Let x = a + b. suppose $\pm \Delta a$ is absolute error in a and $\pm \Delta b$ is absolute error in b, then we have

$$x + \Delta x = (a \pm \Delta a) + (b \pm \Delta b)$$

$$= (a + b) \pm (\Delta a + \Delta b)$$

$$\Delta x = (a + b) \pm (\Delta a + \Delta b) - x$$

$$\therefore \Delta x = \pm (\Delta a + \Delta b)$$

$$[\because x = a + b]$$

Thus, "The maximum possible error in the addition of quantities is equal to the sum of their absolute errors".

% error in x is
$$\frac{\Delta x}{x} \times 100 = \pm \left[\frac{\Delta a + \Delta b}{a + b} \right] \times 100$$

(2) Error in subtraction

Let
$$x = a - b$$

$$x + \Delta x = (a \pm \Delta a) - (b \pm \Delta b)$$

$$= (a - b) \pm (\Delta a \mp \Delta b)$$

$$\Delta x = (a - b) \pm (\Delta a \mp \Delta b) - x$$

$$\therefore \Delta x = \pm (\Delta a \mp \Delta b)$$

But for maximum possible error Δa and Δb must be of same sign. $\therefore \Delta x = \pm (\Delta a + \Delta b)$

Thus, the maximum possible error in subtraction of quantities is equal to the sum of their absolute errors.

% error in x is
$$\frac{\Delta x}{x} \times 100 = \pm \left(\frac{\Delta a + \Delta b}{a - b}\right) \times 100$$

(3) Error in product

Let
$$x = ab$$

$$x + \Delta x = (a \pm \Delta a) (b \pm \Delta b)$$

= $ab \pm a\Delta b \pm b\Delta a \pm \Delta a \Delta b$

If Δa and Δb are small, then Δa Δb will be very small and thus can be ignored.

$$\therefore$$
 $x + \Delta x = ab \pm a \Delta b \pm b \Delta a$

$$\Delta x = \pm (a \Delta b + b \Delta a) = \pm (b \Delta a + a \Delta b)$$

The maximum fractional error in x is $\frac{\Delta x}{x} \times 100 = \pm \left(\frac{\Delta a}{a} + \frac{\Delta b}{b}\right) \times 100$. Thus the maximum fractional error in the

product is equal to the sum of fractional errors in the individual quantities.

(4) Error in quotient (or division)

Let
$$x = \frac{a}{b}$$

$$x + \Delta x = \frac{a \pm \Delta a}{b \pm \Delta b} = \frac{a \left(1 \pm \frac{\Delta a}{a}\right)}{b \left(1 \pm \frac{\Delta b}{b}\right)}$$

$$= \frac{a}{b} \left(1 \pm \frac{\Delta a}{a}\right) \left(1 \pm \frac{\Delta b}{b}\right)^{-1}$$

$$= \frac{a}{b} \left(1 \pm \frac{\Delta a}{a}\right) \left(1 \mp \frac{\Delta b}{b}\right) \qquad \text{or,} \qquad x + \Delta x = x \left(1 \pm \frac{\Delta a}{a}\right) \left(1 \mp \frac{\Delta b}{b}\right)$$

$$1 + \frac{\Delta x}{x} = 1 \pm \frac{\Delta a}{a} \mp \frac{\Delta b}{b} \pm \frac{\Delta a}{a} \cdot \frac{\Delta b}{b}$$

As the terms $\frac{\Delta a}{a}$ and $\frac{\Delta b}{b}$ are small, their product $\frac{\Delta a}{a} \cdot \frac{\Delta b}{b}$ can be neglected. Thus maximum fractional error is given

by
$$\frac{\Delta x}{x} = \pm \left(\frac{\Delta a}{a} + \frac{\Delta b}{b}\right)$$

And maximum possible percentage error in x is

$$\frac{\Delta x}{x} \times 100 = \pm \left(\frac{\Delta a}{a} + \frac{\Delta b}{b}\right) \times 100$$

(5) Error in the power of quantity

Let
$$x = a^p$$

$$x + \Delta x = (a \pm \Delta a)^{p} = a^{p} \left(1 \pm \frac{\Delta a}{a} \right)^{p}$$

$$= a^{p} \left(1 \pm p \frac{\Delta a}{a} \right) \qquad \text{or} \qquad \frac{x + \Delta x}{x} = 1 \pm p \frac{\Delta a}{a}$$

$$1 + \frac{\Delta x}{x} = 1 \pm p \frac{\Delta a}{a}$$

$$\frac{\Delta x}{x} = \pm p \frac{\Delta a}{a}$$

Maximum percentage error in x is $\frac{\Delta x}{x} \times 100 = \pm p \left(\frac{\Delta a}{a} \times 100 \right)$

The fractional error in the quantity raised to power 'p' is p times the fractional error in that quantity.

(6) General case

If
$$x = \frac{a^p b^q}{c^r}$$
, then the maximum possible fractional error in x is $\frac{\Delta x}{x} = \pm \left[p \frac{\Delta a}{a} + q \frac{\Delta b}{b} + r \frac{\Delta c}{c} \right]$

And the maximum possible percentage error is $\frac{\Delta x}{x} \times 100 = \pm \left[p \frac{\Delta a}{a} \times 100 + q \frac{\Delta b}{b} \times 100 + r \frac{\Delta c}{c} \times 100 \right]$

Illustrations

- State the number of significant figures in the following
 - (i) 0.007 m^2
- (ii) 2.64×10^{24} kg
- (iii) 0.2370 g cm^{-3}
- (iv) 6.320 J

- (v) 6.032 Nm^{-2} (vi) 0.0006032 m^2
- (vii) 2.000 m
- (viii) 5100 kg (ix) 0.050 cm

Solution

- (i) one: 7
- (ii) three : 2, 6, 4
- (iii) four : 2, 3, 7, 0
- (iv) four : 6, 3, 2, 0

- (v) four: 6, 0, 3, 2
- (vi) four: 6, 0, 3, 2
- (vii) four : 2, 0, 0, 0
- (viii) four: 5, 1, 0, 0

(ix) two: 5, 0

5100 kg is a measured value, and so it has four significant figures. If it is simply a numerical value, 5100, then number of significant digits would be two.

- 11. Solve the following and express the result to an appropriate number of significant figures.
 - Add 6.2 g, 4.33 g and 17.456 g (i)
 - Subtract 63.54 kg from 187.2 kg (ii)
 - $75.5 \times 125.2 \times 0.51$ (iii)
 - 2.13×24.78 (iv) 458.2
 - $2.51 \times 10^{-4} \times 1.81 \times 10^{7}$ (v) 0.4463

Solution

(i) 6.2 g + 4.33 g + 17.456 g = 27.986 g

The result should be rounded off to first decimal place due to 6.2 g

$$= 28.0 g$$

(ii) 187.2 kg - 63.54 kg = 123.66 kg

The result should be rounded off to first decimal place due to 187.2 kg

$$= 123.7 \text{ kg}$$

(iii) $75.5 \times 125.2 \times 0.51 = 4820.826$

The result should be rounded off to two significant digits due to 0.51

$$=4800$$

(iv)
$$\frac{2.13 \times 24.78}{458.2} = 0.115193$$

The result should be rounded off to three significant digits because of 2.13

$$= 0.115$$

(v)
$$\frac{2.51 \times 10^{-4} \times 1.81 \times 10^{7}}{0.4463} = 10179.48$$

The result should be rounded off to three significant digits because of $1.81 = 1.02 \times 10^4$

- If $L = 2.5 \times 10^4$ and $B = 3.9 \times 10^5$ then B L =12.
- (A) 1.4×10^{4}
- (B) 1.4×10^5
- (C) 3.6×10^4 (D) 3.6×10^5

Solution

Given L = 2500 and B = 390000

Now B – L =
$$390000 - 25000 = 365000$$

$$=3.65\times10^{5}$$

 $= 3.6 \times 10^5$

(rounded to one place of decimal)

13. The area enclosed by a circle of diameter 1.06 m to correct number of significant figures is

[take
$$\pi = 3.14$$
]

(A) 0.88 m^2

- (B) 0.088 m^2
- (C) 0.882 m^2
- (D) $0.530 \,\mathrm{m}^2$

Ans (C)

$$r = \frac{1.06}{2} = 0.530 \text{ m}$$

Area is
$$A = \pi r^2 = 3.14(0.530)^2 = 0.882026 \text{ m}^2$$

$$= 0.882 \text{ m}^2$$

(rounded to three significant digits)

14. Object distance, $u = (50.1 \pm 0.5)$ cm and image distance, $v = (20.1 \pm 0.2)$ cm then focal length is

(A)
$$(12.4 \pm 0.4)$$
 cm

(B)
$$(12.4 \pm 0.1)$$
 cm

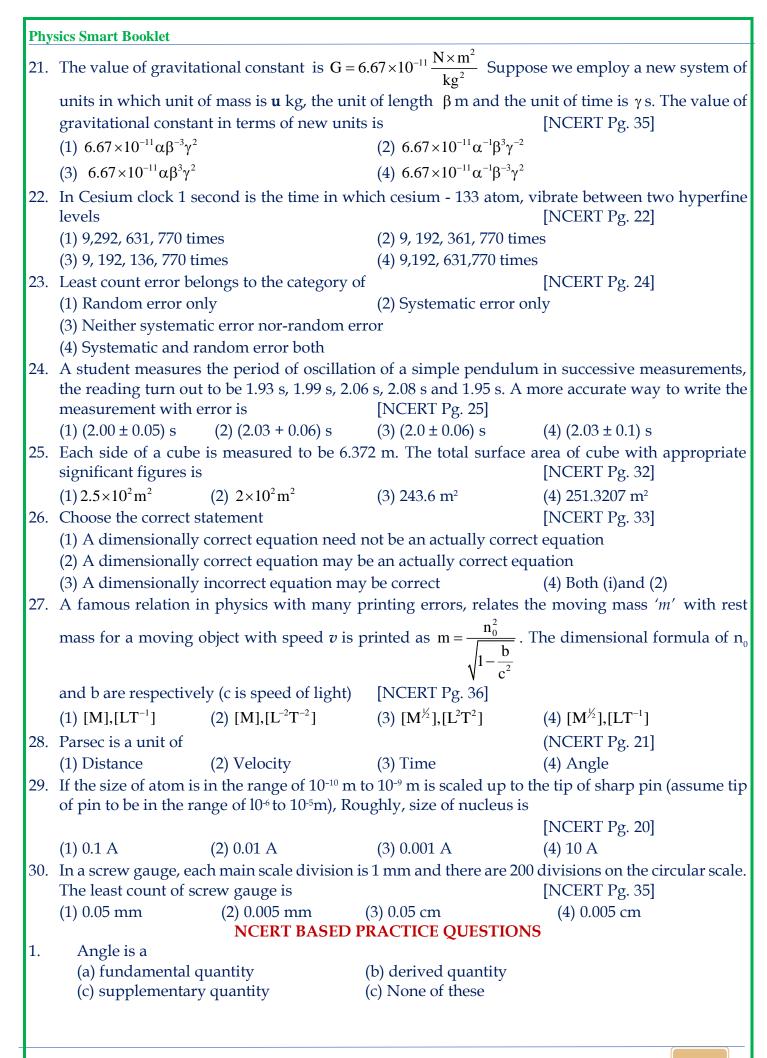
(C)
$$(14.3 \pm 0.4)$$
 cm

(D)
$$(14.3 \pm 0.1)$$
 cm

Ans (C)

Focal length is given by
$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$
 or $f = \frac{uv}{u+v} = \frac{(50.1)(20.1)}{50.1 + 20.1}$ or $f = 14.345$ cm = 14.3 cm

$$\frac{\Delta f}{f} = \pm \left[\frac{\Delta u}{u} + \frac{\Delta v}{v} + \frac{\Delta u + \Delta v}{u + v} \right] = \pm \left[\frac{0.5}{50.1} + \frac{0.2}{20.1} + \frac{0.5 + 0.2}{50.1 + 20.1} \right] = \pm (0.0299)$$


$$\Delta f = 0.0299 \times 14.3 = 0.428 = 0.4 \text{ cm}$$

So focal length = (14.3 ± 0.4) cm

NCERT LINE BY LINE QUESTIONS

1.	Natural sciences d	oes not include		[NCERT Pg. 2
	(a) Physics	(b) Chemistry	(c) Biology	(d) Social Scient
	Principal thrusts in	n Physics are		[NCERT Pg. 2
	(a) Unification	(b) Reduction	(c) Both (a)and (b)	(d) None of th
	Attempt to explain		henomenon in terms of	
				[NCERT Pg. 2
	(a) Unification	(b) Reduction	(c) Fusion	(d) All of the a
	Classical Physics n	nainly deals with		[NCERT Pg. 3
	(a) Microscopic ph	enomenon	(b) Macroscopic ph	enomenon
	(c) Atomic phenon	nenon	(d) Heisenberg's ur	ncertainty princi
	Among the following	ing, choose the incor	rect statement	[NCERT Pg. 3
	(a) The microscopi minute scales of at		deals with the constitu	ition and struct
			ith macroscopic phen	omena and inc
			nd Thermodynamics	(1) NT (1)
	(c) Both of the above			(d) None of th
		eutron induced fissio ar weapons, was dis	on of uranimum, which covered by	serves as a bas
	(a) Hahn and Meit	ner	(b) Einstein	
	(c) Neils Bohr		(d) Nicholas Tesla	
		ring, the scientists a following is incorrec	are matched with their tly matched?	major contribution major contribution major contribution major contribution major major major major major major
	A) Archimedes		Principle of Buoyar	ncy
	B) Christiaan Huyg	gens	Wave Theory of Li	ght
	C) JCBose		X-rays	
	D) Albert Einstein		Theory of Relativity	У
	(a) A	(b)B	(c)C	(d)D
	• •	• •	e who is credited for th	
	condensed matter	is		[NCERT Pg. 6
	(a) Ernest Orlando	Lawrence	(b) C-V. Raman	
	(c) Ernest Rutherfo	ord	(d) Lev Davidovich	Landau
	Full form of LASE	R is	, ,	[NCERT Pg. 7
	(a) Light amplifica	tion by shorted extra	action of rays	
			mission of radiation	
	. , .	n of silent extraction		
	(d) None of the abo			
			the following in relation	on to the electro
	waves.	0	O	[NCERT Pg. 8
		c force do not reauir	e intervening medium	. 0, 0
	(b) They act over la	_	0	
	, ,		n the gravitational forc	es
	• •	forces may be attra		

Phy	sics Smart Booklet				
11.	Choose the correct o	ption.		[NCERT	Pg. 22]
	(1)A most precise me	easurement may be mos	st accurate		
	(2) A most precise	measurement will ne	ecessarily be most accur	ate	
	(3) A most precise m	easurement will be less	accurate		
	(4) A most accurate	measurement will neces	ssarily be most precise		
12.	1 metre is the length a second of a second	of path travelled by lig of a second	tht in vacuum during a	time inter [NCERT	
	1) $\frac{1}{299,972,458}$ of a	second	2) $\frac{1}{299,792,548}$ of a se	cond	
	3) $\frac{1}{299,792,458}$ of a	second	4) $\frac{1}{299,792,854}$ of a se	cond	
13.	The kelvin is the frac	ction		[NCERT	Pg. 17]
	213	odynamic temperature o			
		odynamic temperature o			
	3) $\frac{1}{273.16}$ of the thermodynamic temperature of triple point of water i				
	273	odynamic temperature o			
14.	1" (second of arc) in	radian is (approximatel	y)	[NCERT	Pg. 19]
	(1) 5.85×10^{-6} rad		(2) 8.55×10^{-6} rad		
	(3) 5.85×10^{-5} rad		(4) 4.85×10^{-6} rad		
15.	diameter of sun is	n is 1.39×10 ⁹ m. The dis	tance of sun from earth	h is 1.496 NCERT]	· ·
	(1) 1290"		(2) 9210"		
	(3) 2190'		(4) 1920"		
16.	_	h of two rods are $l_1 = 30$	_	0 cm + 0.1	cm. The percentage
	error in difference of	•	[NCERT Pg. 261	(1) = 0/	
4.7	(1) 6%	(2) 4%	(3) 5%	(4) 3%	. 1
17.		stances $R_1 = 300 \pm 3$ ohr			
	_	e of parallel combination		INCER	T Pg. 37]
	(1) $[120 \pm 1.8]$ ohm		(2) $(120 \pm 1]$ ohm		
10	(3) [120 ±1.6] ohm		(4) [120 ±2.0] ohm	D 1	0/ 20/ 20/ 1 40/
18.	If percentage error	in measurement of qu	iantities A, B. C and 2 D1/2	D are 1	%, 2%. 3% and 4%
	respectively, then pe	ercentage error in measu	arement of $z = \frac{A^2B^{4/2}}{C^{1/3}D^{1/4}}$ i	s [NCERT	[Pg. 27]
	(1) 5%	(2) 4%	(3) 6%	(4) 8%	
19.		nificant zeros in 0.00480		[NCERT	Pg. 28]
	(1) 1	(2)2	(3)3	(4)4	
20.	The value of (3.8×10^{-4})	$0^3 + 3.5 \times 10^2$) with regard	ls to significant figure i	S	[NCERT Pg, 30]
	(1) 7.3×10^5	(2) 4.2×10^3	(3) 4.15×10^3	$(4) 7.3 \times 1$	10^3

Physics	s Smart Booklet			
2.	Parallax method is	used for measureme	ent of	
	(a) length	(b) time	(c) mass	(d) speed
3.	1 astronomical unit	(AU) is equal to		
	(a) 1.496×10^{18} m		(b) 1.496×10^{15} m	
	(c) 1.496×10^{11} m		(d) 1.496×10^9 m	
4.	Parsec is a unit for i	measurement of		
	(a) Time	(b) Length	(c) Mass	(d) none of these
5.	Light year is used to			
	(a) time	(b) length	(c) mass	(d) None of these
6.	1atomic mass unit (
	a) 1.66×10 ⁻²⁷ kg	/ 1	(b) $1.66 \times 10^{-24} \text{kg}$	
	(c) 1.66×10^{-22} kg		(d) $1.66 \times 10^{-23} \text{kg}$	
7.	0.002308 has signific	cant figure	(1)	
	(a) 4	(b) 6	(c) 7	(d) 3
8.	Significant figure in			(42) 3
	(a) 2		(c) 4	(d) 5
				` '
9.	Dimension of $\frac{1}{2} \in O$	E^2 is $(\in_0 \to \text{permittive})$	ity of free space, E- electric	field)
	(a) ML-1T-2	(b) ML ² T- ²	(c) ML ⁻¹ T ⁻¹ $\mu_0 \to permiability of frees$	(d) ML^2T^{-1}
	\mathbf{R}^2		(c) 1/12	(4) 1112 1
10.	Dimension of $\frac{B}{2}$ is	s(B→ magnetic field,	$\mu_0 \rightarrow permiability \ of \ frees$	pace)
	$2\mu_0$	4) > = 4 = 4	() > == == =	(1) 3
		(b) ML ⁻¹ T ⁻¹	(c) ML ² T ⁻¹	$(d) ML^{-1}T^{-2}$
11.	Dimension of $\frac{1}{\sqrt{\mu_0}}$	= is		
	$\sqrt{\mu_0}$	≡ ₀		
	(a) $[MLT^{-2}]$	(b) $M^0 L^1 T^{-2}$	(c) $M^0 L^1 T^{-1}$	(d) $M^{0}L^{-1}T^{-1}$
	p^2			
12.	Dimension of $\frac{1}{ra}$ is	same as of, $v(v)$ is ve	elocity, r →radius, g-accele	ration due to gravity)
	rg	(b) accoloration	(a) longth	(d) speed
13.		(b) acceleration	(c) length	(d) speed
13.	Dimension of coeffi	(b) ML ⁻¹ T ⁻¹	(a) MI T - 2	(d) M-11-1T-1
14.	(a) [ML ² T ⁻¹]		(c) MLT - 2	(d) $M^{-1}L^{-1}T^{-1}$
14.	Dimension of planc		(a) MI 2 T - 1	(d) None of these
15	(a) [ML ² T ⁻²]		(c) ML^2T^{-1}	(d) None of these
15.	Dimension of strain		(a) [M1I 0T0]	(a) [MOI OTO]
17	· / = =	(b) [M ⁰ L ⁻¹ T ⁰]	(c) $[M^1L^0T^0]$	(d) $[M^0L^0T^0]$
16.	Dimension of surface		(a) [MI 0T-1]	(A) [MI T-1]
17	(a) [ML T ⁻²]	(b) [ML ⁰ T- ²]	(c) $[ML^0T^{-1}]$	(d) [MLT-1]
17.	Dimension of efficie		(a) [MOI OT-0]	(A) [M11 0T0]
	(a) $[M^0L T^0]$		(c) $[M^0L^0T^{-0}]$	(d) $[M^1L^0T^0]$
18.	Dimension of $\frac{1}{2}$ Li ²	is		
			(-) [N/II 2T 1]	(4) [N. (I T 2]
	(a) $[ML^2 T^{-2}]$		(c) $[ML^2T^{-1}]$	(d) $[ML^{-1}T^{-2}]$
19.	Dimension of $\frac{1}{2}$ Cv ²	2		
	_		() [2 cr 0cm 4]	(1) [2 57 477 0]
	(a) $[ML^2 T^{-2}]$	(b) [M L1 ⁻²]	(c) $[ML^2T^{-1}]$	(d) $[ML^{-1}T^{-2}]$
20.	Dimension of $\frac{Q_2}{2C}$ is	$Q \rightarrow ch \arg e$		
	(a) [MLT ⁻²]	(b) $[ML^2 T^{-2}]$	(c) $[ML^2T^{-1}]$	$(d) [ML^{-1}T^{-2}]$

Physi	cs Smart Booklet			
21.	A physical quar	ntity P is related to four	observables a,b,c and d as	follows $P \frac{a^3 b^2}{\sqrt{c}d}$ percentage error
	in a,b,c,d are 1%	%,3%,4% and 2% respe	ctively. Percentage error in	quantity P is.
	(a) 10%	(b) 15%	_	(d) 8%
22.		by a circle of diametric	• •	· ,
		-	(c) 0.88 m^2	(d) none of these
2 3.				0.0 ± 0.3) S. Percentage error in
	measurement o	f velocity is		
	(a) 9%	(b) 7%	(c) 5%	(d) 3%
24.	One shake is eq	ual to		
	(a) 10^8 sec	(b) 10 ⁻⁹ sec	(c) 10 ⁻⁸ sec	(d) 10 ⁻¹⁰ sec
25.	Ratio of SI to c.	g.s units of KE is		
	(a) 10^6	(b) 10 ⁻⁷	(c) 10^7	(d) 10^8
26.	Which of the fo	llowing have same dir	mensions?	
	(a) specific heat	•		
	(b) Momentum	and impulse		
		nertia and angular mo	mentum	
	` '	l surface tension		
27.		s of magnetic moment		
	(a) L^2A^{-1}	(b) $L^2 A^1$	(c) LA^2	(d) L^2A^{-3}
28.		action factor of tangen		
	(a) gauss	(b) tesla	(c) radian	(d) ampere
29.		s of the gravitational co		
	(a) $[ML^{-1} T^{-1}]$			
30.	If L and R deno frequency?	te inductance and resi	stance respectively, which	of the following dimensions of
	(a) $\frac{R}{L}$	(b) $\frac{L}{R}$	(c) $\sqrt{\frac{R}{L}}$	(d) $\sqrt{\frac{L}{R}}$
31.	The dimensiona	al formula of magnetic	flux is	
		(b) $[M^1L^0T^{-2}A^{-2}]$		(d) $[M^1L^2T^{-1}A^3]$
32.	` ' =	ne following has the di	. , =	() [
		<u> </u>	-	M
	(a) $\frac{ML}{T^2}$	(b) $\frac{M}{L^2T^2}$	(c) $\frac{M}{LT^2}$	(d) $\frac{M}{LT}$
33.	Which of the fo	llowing has metre Kel	vin as the unit?	
	(a) Rydberg cor	•	(b) wein's constant	
	(c) Solar constan		(d) gas constant	
	• •		(a) gas constant	
0.4	_	L DCV		
34.	Dimension of R			(1) 4.2
25	(a) A ⁻¹	(b) A-2	(c) A	(d) A^2
35.	The dimension	5	/ \ I 2N #1T 2	(1) N (2) 2T 2
26	(a) $L^0M^1T^{-3}$	(b) $L^{1}M^{2}T^{-2}$	(c) $L^2M^1T^{-2}$	(d) $M^2L^2T^{-3}$
36.			and C is capacitances are sa	ime as that of
	(a) inverse time		(b) time	
27	(c) square of tin		(d) square root of time	
37.		llowing is a dimensior		
	(a) refractive in		(b) dielectric constant	at
	(c) relative dens	sity	(d) gravitational constant	ııı

Physics Smart Booklet The length of a rod is (11.05 ± 0.05) cm. What is the total length of 2 such rods? 38. (b) (22.10 ± 0.05) cm (a) (22.1 ± 0.05) cm (c) (22.100 ± 0.05) cm (d) (22.10 ± 0.10) cm Which of the following quantity can be written in SI unit Kg m² A⁻² S⁻³ 39. (b) Inductance (a) Resistance (c) Capacitance (d) magnetic flux The dimension of $\frac{L}{R}$ is same as that of 40. (c) Inverse of time (a) Time (b) Speed (d) square of time TOPIC WISE PRACTICE QUESTIONS **Topic 1: Units of Physical Quantities** Unit of specific resistance is 1. 1) ohm/ m^2 2) ohm m^3 3) ohm - m 4) ohm/m 2. Temperature can be expressed as derived quantity in terms of 1) Length and mass 2) mass and time 3) length, mass and time 4) none of these 3. Potential is measured in 1) joule/coulomb 2) watt/coulomb 3) newton-second 4) none 4. The siemen is the SI unit of 1) Resistivity 2) Resistance 3) conductivity 4) conductance What is the unit of magnetic permeability? 5. 2) Wb⁻¹ Am 4) Wb A⁻¹ m 3) Wb A m⁻¹ 1) Wb A-1 m⁻¹ The SI unit of coefficient of mutual inductance of a coil is 6. 2) volt 3) farad 4) weber 1) henry 7. Surface tension of a liquid is 70 dyne/cm. Its value in SI is 2) 7 x 10⁻² N/m 3) $7 \times 10^2 \text{ N/m}$ 4) $7 \times 10^3 \text{ N/m}$ 1) 70 N/m Joule - second is a unit of 8. 4) angular momentum 1) energy 2) torque 3) power 9. The unit of the Stefan-Boltzmann's constant is 4) W/m^2K^2 1) W/m^2K^4 2) W/m^{2} $3) W/m^2 K$ Young's modulus of steel is 1.9 x 10¹¹ N/m². When expressed in CGS units of dyne/cm², it will be equal to 10. $(1N = 10^5 \text{ dyne}, 1 \text{ m}^2 = 10^4 \text{ cm}^2)$ 1) 1.9×10^{10} 2) 1.9×10^{11} 3) 1.9×10^{12} 4) 1.9×10^{13} 11. Which one of the following pairs of quantities and their units is a proper match? 2) Magnetic flux – weber 3) Power – farad 1) Impulse – N/sec 4) Capacitance – henry The numerical values of young's modulus in S.I. unit is β . What is its numerical value in cgs system? 12. 2)10 *β* 3) $\beta/10$ β 4) 100 *β* In the eqn. $\left(P + \frac{a}{V^2}\right)(V - b) = \text{constant}$, the unit of a is 13.

1) Dyne \times cm⁵ 2) dyne \times cm⁴ 3) dyne/cm³

4) dyne \times cm²

Physi	cs Smart Booklet			
14.		n the magnitude of the force	ce is 100 dynes. In another	system where the fundamental physica
	quantities are in	kilogram, metre and min	ute, the magnitude of the fo	orce is
	1) 0.036	2) 0.36	3) 3.6	4) 36
15.	If e is the charge	e, V the potential differen	ice, T the temperature, the	the units of $\frac{eV}{T}$ are the same as the
	of			1
		estant 2) Stafanla agnat	ont 2) Doltzmannia oon	extent (1) apprint in all constant
1.0				istant 4) gravitational constant
16.	-	-		n is N. Then the unit of r is
	1) N	$2) N^2$	3) Ns	4) N^2s
17.	If $x = at + bt^2$, v	where x is the distance tr	avelled by the body in kil	ometres while T is the time in seconds
	then the unit of	B is		
	1) km/s	2) kms	$3) \text{ km/s}^2$	$4) \text{ kms}^2$
18.	Which of the fo	ollowing quantities has i	not been expressed in proj	per unit?
	(a) torque	: newton		
	(b) stress	: newton	metre ⁻²	
	` '	elasticity : newton		
	(d) surface tens			
19.	• •			,
19.	=		4 times. The unit of energy	
	1) is increased	•	2) is increased by 10	
20	3) is increased	•	4) remains unchang	
20.				of a unit in which unit of length is 5 cr
		s is 20 g, the density of r		
	1) 8	2) 20	3) 50	4) 80
	Topio	e 2: Errors in Mea	asurements and Si	gnificant Figures
21.	The random er	rors can be reduced by		
	1) Taking more	e number of observation	2) eliminating the 6	error
	3) not taking r	nore care	4) None of these	
22.	Error in the me	asurement of radius of a	sphere is 1%. Then error	in the measurement of volume is
	1) 1%	2) 5%	3) 3%	4) 8%
23.	If $x = a - b$, the	en the maximum percen	tage error in the measurer	ment of x will be
	1) $\left(\frac{2a}{a} + \frac{2b}{b}\right) \times$	$(100\% \ 2) \left(\frac{2a}{a} - \frac{2b}{b}\right) \times 10^{-3}$	$00\% 3) \left(\frac{2a}{a-b} + \frac{2a}{a-b} \right) \times 1$	$00\% \qquad 4) \left(\frac{\Delta a}{a-b} - \frac{\Delta b}{a-b} \right) \times 100\%$
24.	Number of sign	nificant figures in express	$\frac{4.327g}{2.51cm^3}$ is	
	1) 2	2) 4	3) 3	4) 5
25.	If the percenta	ge errors of A, B and C	are a, b and c respective	ely, then the total percentage error in the
	product ABC is	=	-	
	1) abc	2) $a + b + c$	3) $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$	4) $ab+bc+ca$
26.	The maximum	error in the measuremen	t of mass and density of a	cube are 3% and 1% respectively. Th
		in the measurement of v		The same and a suppose of the same and the s
	1) 1%	2) 2%	3) 3%	4) 4%
	-, -, -	-, -, · ·	-/ -/-	-,

The value of resistance is 10.845 $\,\Omega$ and the value of current is 3.23 A. The potential difference is 35.02935

27.

volt. Its value in significant number would be

Physic	s Smart Booklet			
	1) 35 V	2) 35.0 V	3) 35.03 V	4) 35.029 V
28.	A body of mass $m = 3$	3.513 kg is moving alo	ong the x-axis with a speed of :	5.00 ms ⁻¹ . The magnitude of its
	momentum is recorde			
	1) 17.6 kg ms-1		3) 17.56 kg ms-1	
29.			from $T = 2\pi \sqrt{l/g}$? Given fr	action errors in T and l are $\pm x$
	and $\pm y$ respectively.	2) x - y	2) 2v + v	4) 2x - y
30.	10 mm x5 mm. The r 1) 5%	rectangular block meas maximum percentage e 2) 10%	sured with callipers having leasurer in the measurement of the 3) 15%	st count of 0.01 cm are 5 mm x e volume of the block is 4) 20%
31.	The length of one roo	$d l_1 = 3.323 \text{ cm} \text{ and th}$	the other is $l_2 = 3.321$ cm. Both	h rods were measured with one
	measuring instrumen	t with least count 0.00	1 cm then $(l_1 - l_2)$ is	
32.	Relative density of a	metal may be found w n water it reads (4.00 ±		4) None of these In air the spring balance reads ensity along with the maximum
	1		3) (5.00 ± 0.10)	4) $(5.00 \pm 6\%)$
33.	A physical quantity	X is represented by	$X = (M^x L^{-y} T^{-z})$. The maxi	mum percentage errors in the
		=	are a%, b% and c%. The ma	ximum percentage error in the
	measurement of X w			
2.4	•		3) $(ax + by + cz)\%$	•
34.			-	13% respectively. The error, in
	••	ed by measuring mass	-	4) 2 0/
25	1) 12 % The least count of a second count of a s	2) 10 %	3) 8 % time of 20.5 oscillations of a	4) 2 %
35.		um percentage error in		pendulum is measured to be 25
	1) 8 %	2) 1 %	3) 0.8 %	4) 16 %
36.			•	th the help of vernier callipers.
		± 0.01 cm and 3.87 ± 0.01	0.01 cm respectively. The thick	kness of the wall of the cylinder
	is	2) 0.18 ± 0.02 am	2) 0.26 ± 0.01 am	4) 0.19 ± 0.01 am
37.	1) 0.36 ± 0.02 cm	2) 0.18 ± 0.02 cm	<i>'</i>	4) 0.18 ± 0.01 cm
37.		to correct significant		ount 0.001 cm. The diameter is
	1) 0.965 cm	2) 0.966 cm	3) 0.967 cm	4) None of these
38.	<i>'</i>		•	easurement of M, L and T are,
56.			ge error in the quantity X is	easurement of M, L and T are,
	1) $a + b + c$	2) a + b -c	3) a b 2	4) None of these
39.	In a simple pendului	m experiment for the	determination of acceleration	due to gravity, time period is
			ength was measured with an ac	curacy of 0.3%. The percentage
	accuracy in the value			
	1) 0.8%	2) 0.7%	3) 0.5%	4) 0.6%
40.	The relative error in the determination of its v		e surface area of a sphere is of	a. Then the relative error in the
		_	3	
	1) $\frac{2}{3}\alpha$	$2) \frac{2}{3}\alpha$	3) $\frac{3}{2}\alpha$	4) α

DI '				
Physi 41.	The density of a cu	uha is massurad by ma	acuring its mass and la	ength of its sides. If the maximum error in
41.		=		y, the maximum error in the measuremen
	of density will be	of mass and length are	+70 and 370 respectives	y, the maximum error in the measuremen
	1) 7%	2) 9%	3) 12%	4) 13%
		,		
42.	The refractive inde	ex of water measured	by the relation $\mu = -\frac{1}{a_1}$	real depth pparent depth is found to have values or
	1.34, 1.3 8, - appar	ent depth 1.32 and 1.3	36; the mean value of r	efractive index with percentage error is
	1) $1.35 \pm 1.48 \%$	2) $1.35 \pm 0 \%$	3) 1.36 ± 6 %	4) $1.36 \pm 0 \%$
43.		0.3 ± 0.003 g, radius 0. rement of its density is		gth 6 ± 0.06 cm. The maximum percentage
	1) 1	2) 2	3) 3	4) 4
44.		<i>'</i>	,	orce on the plate and length of the sides of
	d 141 E	F	TC 41 :	
	the plate by F using	g the formula $P = \frac{1}{l^2}$.	If the maximum errors	s in the 2 measurement of force and length
			ximum error in the me	easurement of pressure is
	1) 1%	2) 2%	3) 8%	4) 10%
45.				% when heated through 10°C. What is the the l metre is heated through 10°C?
	1) 4%	2) 8%	3) 16%	4) 12%
46.	Intensity observed	in an interference patte	ern is $I = I_O \sin^2 \theta$ at θ	= 30° intensity $I = 5 \pm 0.0020 W / m^2$. Find
		angle, if $I_0 = 20 \text{ W/n}$		
	1) $\frac{4}{\pi}\sqrt{3} \times 10^{-2}\%$	2) $\frac{2}{\pi}\sqrt{3}\times10^{-2}\%$	3) $\frac{1}{\pi}\sqrt{3}\times10^{-2}\%$	4) $\frac{3}{\pi}\sqrt{3}\times10^{-2}\%$
47.	If $f = x^2$, then the	relative error in f is		
	1) $\frac{2\Delta x}{x}$	$2) \frac{\left(\Delta x\right)^2}{x}$	3) $\frac{\Delta x}{x}$	4) $(\Delta x)^2$
48.	Mass of a body is 2 digits?	210 gm and its density	is 7.981 g/cm ³ what wi	ill be its volume, with regard to significan
	•	2) 26 cm ³	3) 27 cm^3	4) 26.3cm ³
	,	Topic 3: Dimens	,	•
49.		wing set have differen	•	Qualiticos
47.		ig's modulus, Stress		Potential difference, Electric potential
	(3) Heat, Work do			nt, Electric flux, Magnetic field
50.		owing is a dimensional	. , .	it, Dicette Hux, Magnette Held
50.		•		sity (4) Gravitational constant
				2
51.				ace C. The dimensional formula for $\frac{Q^2}{C}$ is
	$1) \left\lfloor L^2 M^2 T \right\rfloor$	$2) \left[LMT^2 \right]$	3) $\left\lfloor L^2 M T^{-2} \right\rfloor$	$4) \left\lfloor L^2 M^2 T^2 \right\rfloor$
52.	Dimensions of 'res	sistance' are same as (v	where h is Planck's co	nstant and e is charge)
	1) h/e	2) h^2/e	3) h/e^2	4) h^2/e^2

The Solar constant is defined as the energy incident per unit area per second. The dimensional formula

53.

for solar constant is

		~	
1) // 6/111	• • •	` '	(4) Weber (W2)
. , .	mentum	(2) Specific heat an	d latent heat
* *			
$1) \left[ML^2T^{-2}A^{-2} \right]$	$2) \left[ML^2T^3A^{-1} \right]$	$3) \left[ML^2T^{-3}A^1 \right]$	$4) \left[ML^2 T^{-3} A^{-1} \right]$
If L denotes the ind	uctance of an inductor t	through which a curre	ant i is flowing, the dimensions of Li^2 are
$1) \left[ML^2T^{-2} \right]$	$2) \left[MLT^{-2} \right]$	$3) \left[M^2 L^2 T^{-2} \right]$	4) not expressible in M, L, T
The displacement o	f a body at a particular	second n is given by	the expression $S_{nth} = u + \frac{a}{2}(2n-1)$. The
dimensional formul	a of S_{nth} in this equation	n is	
$1)\left[M^{1}L^{0}T^{1}\right]$	$2) \left[M^{0} L^{1} T^{0} \right]$	$3) \left[M^{0}L^{1}T^{-1} \right]$	$4) \left[M^{0}L^{0}T^{0} \right]$
In the equation $P = \frac{1}{2}$	$\frac{RT}{V-b}e^{\frac{aV}{RT}}$ V = volume, I	P = pressure, R = univ	versal gas constant, and T = temperature.
The dimensional for	rmula of a is same as th	at of	
(1) V	(2) P	(3) T	(4) R
Time (T), velocity	(3) and linear momentu	um (h) are chosen as	fundamental quantities instead of mass,
length and time. In	terms of these, the dime	ensions of mass would	l be:
$1) \left[M \right] = \left[C^{-1} h \right]$	$2) \left[M \right] = \left[T^{-1}C^2 h \right]$	3) $[M] = [T^{-1}C^{-2}h^{-1}]$	$\begin{bmatrix} 1 \end{bmatrix} 4 \begin{bmatrix} M \end{bmatrix} = \begin{bmatrix} C^{-2} h \end{bmatrix}$
Suppose the kinetic	c energy of a body os	cillating with amplit	ude A and at a distance x is given by
$K = \frac{Bx}{x^2 + A^2}$ the din	nensions of B are the sa	me as that of	
(1) work/time	(2) work \times distance	(3) work/distance	(4) work \times time
The dimensions of	universal gas constant a	re	
$1) \left[L^2 M^1 T^{-2} K^{-1} mot^2 \right]$	$\begin{bmatrix} L^{-1} \end{bmatrix}$ 2) $\begin{bmatrix} L^{1}M^{2}T^{-2}K^{-1}mot$	$[L^{-1}]$ 3) $[L^{1}M^{1}T^{-2}K^{-1}m]$	$[L^2M^2T^{-2}K^{-1}mol^{-1}]$
			_
1) $\alpha = \beta = \gamma$	2) $\alpha \neq \beta = \gamma$	3) $\alpha = \beta \neq \gamma$	4) $\alpha \neq \beta \neq \gamma$
Given that $(\alpha/p\beta)$	$= az/K_B\theta$ where p is	s pressure, z is distance	ce, KB is Boltzmann constant and θ is
-	•		
	Which of the follow (1) Impulse and mo (3) Moment of inert The dimensions of 1) $\left[ML^2T^{-2}A^{-2}\right]$ If L denotes the ind 1) $\left[ML^2T^{-2}\right]$ The displacement of dimensional formula 1) $\left[M^1L^0T^1\right]$ In the equation $P=R$ The dimensional for (1) V Time (T), velocity length and time. In 1) $\left[M\right] = \left[C^{-1}h\right]$ Suppose the kinetic $K = \frac{Bx}{x^2 + A^2}$ the dim (1) work/time The dimensions of the dimensions of the dimensions of the volume V of the velocity of the velocit	Which of the following has the same dime (1) Impulse and momentum (3) Moment of inertia and force The dimensions of voltage in terms of mass 1) $\left[ML^2T^{-2}A^{-2}\right]$ 2) $\left[ML^2T^3A^{-1}\right]$ If L denotes the inductance of an inductor of the displacement of a body at a particular dimensional formula of S_{nth} in this equation 1) $\left[M^1L^0T^1\right]$ 2) $\left[M^0L^1T^0\right]$ In the equation $P = \frac{RT}{V-b}e^{\frac{aV}{RT}}V = \text{volume}$, where $P = \frac{RT}{V-b}e^{\frac{aV}{RT}}V = \text{volume}$, where $P = \frac{RT}{V-b}e^{\frac{aV}{RT}}V = \text{volume}$. The dimensional formula of a is same as the (1) $P = \frac{RT}{V-b}e^{\frac{aV}{RT}}V = \text{volume}$, where $P = \frac{RT}{V-b}e^{\frac{aV}{RT}}V = \text{volume}$. The dimensional formula of a is same as the (1) $P = \frac{RT}{V-b}e^{\frac{aV}{RT}}V = \text{volume}$. Suppose the kinetic energy of the same than 1 $P = \frac{RT}{V-b}e^{\frac{aV}{RT}}V = \text{volume}$ and $P = \frac{RT}{V-b}e^{\frac{aV}{RT}}V = \text{volume}$. Suppose the kinetic energy of a body of $P = \frac{RT}{V-b}e^{\frac{aV}{RT}}V = \frac{RT}{V-b}e^{\frac{aV}{$	Which of the following has the same dimensions? (1) Impulse and momentum (2) Specific heat an (3) Moment of inertia and force (4) Thrust and surfar. The dimensions of voltage in terms of mass (M), length (L) and 1) $\left[ML^2T^{-2}A^{-2}\right]$ 2) $\left[ML^2T^3A^{-1}\right]$ 3) $\left[ML^2T^{-3}A^1\right]$ If L denotes the inductance of an inductor through which a curre 1) $\left[ML^2T^{-2}\right]$ 2) $\left[MLT^{-2}\right]$ 3) $\left[M^2L^2T^{-2}\right]$ The displacement of a body at a particular second n is given by dimensional formula of S_{nih} in this equation is 1) $\left[M^1L^0T^1\right]$ 2) $\left[M^0L^1T^0\right]$ 3) $\left[M^0L^1T^{-1}\right]$ In the equation $P = \frac{RT}{V-b}e^{\frac{\alpha V}{RT}}$ V = volume, P = pressure, R = universe the dimensional formula of a is same as that of (1) V (2) P (3) T Time (T), velocity (3) and linear momentum (h) are chosen as length and time. In terms of these, the dimensions of mass would 1) $\left[M\right] = \left[C^{-1}h\right]$ 2) $\left[M\right] = \left[T^{-1}C^2h\right]$ 3) $\left[M\right] = \left[T^{-1}C^{-2}h\right]$ Suppose the kinetic energy of a body oscillating with amplity $K = \frac{Bx}{x^2 + A^2}$ the dimensions of B are the same as that of (1) work/time (2) work × distance (3) work/distance. The dimensions of universal gas constant are 1) $\left[L^2M^1T^{-2}K^{-1}mol^{-1}\right]$ 2) $\left[L^2M^2T^{-2}K^{-1}mol^{-1}\right]$ 3) $\left[L^2M^1T^{-2}K^{-1}mol^{-1}\right]$ The volume V of water passing any point of a uniform tube disectional area A of the tube and velocity u of water by the relation will be true? 1) $\alpha = \beta = \gamma$ 2) $\alpha \neq \beta = \gamma$ 3) $\alpha = \beta \neq \gamma$ Given that $\left(\alpha/p\beta\right) = az/K_B\theta$ where p is pressure, z is distance.

2) $\left[MLT^{-2}\right]$ 3) $\left[ML^2T^{-2}\right]$ 4) $\left[ML^0T^{-3}\right]$

Which of the following units denotes the dimension $\frac{ML^2}{Q^2}$, where Q denotes the electric charge?

2) $\left[M^{2}L^{-2}T^{-1}\right]$ 3) $\left[M^{2}L^{-2}T^{-2}\right]$ 4) $\left[ML^{-2}T^{-1}\right]$

The dimensions of physical quantity X in the equation Force = $\frac{X}{Density}$ is given by

Physics Smart Booklet

54.

55.

 $1) \left[M^{0}L^{0}T^{0} \right]$

1) $\left\lceil ML^4T^{-2}\right\rceil$

66. The position x of a particle at time t is given by $x = \frac{V_0}{a} (1 - e^{-at})$, where V_0 is constant and a > 0. The dimensions of V_0 and a are

1) $M^{0}LT^{-1}$ and T^{-1} 2) $M^{0}LT^{0}$ and T^{-1} 3) $M^{0}LT^{-1}$ and LT^{-2} 4) $M^{0}LT^{-1}$ and T^{-1}

67. Given as: $h = \frac{2S\cos\theta}{r\rho g}$ where S is the surface tension of liquid, r is the radius of capillary tube, ρ is

density and g is acceleration due to gravity then dimensional formula for S is:

1) $\left[ML^{0}T^{-2}\right]$ 2) $\left[M^{0}LT^{-2}\right]$ 3) $\left[ML^{2}T^{-2}\right]$ 4) $\left[M^{0}L^{0}T^{-3}\right]$

68. The velocity v of a particle at time t is given by $v=at+\frac{b}{t+c}$ The dimensions of a, b c are respectively

1) $\left[LT^{-2}\right]\left[L\right]\left[T\right]$ 2) $\left[L^{2}\right]$, $\left[T\right]$ and $\left[LT^{2}\right]$ 3) $\left[LT^{2}\right]$, $\left[LT\right]$ and $\left[L\right]$ 4) $\left[L\right]$, $\left[LT\right]$ and $\left[T^{2}\right]$

69. In the equation $X = 3YZ^2$, X and Z are dimensions of capacitance and magnetic induction respectively. In MKSQ system, the dimensional formula for Y is

1) $\left[M^{-3}L^{-2}Q^{-4}\right]$ 2) $\left[ML^{-2}\right]$ 3) $\left[M^{-3}L^{-2}Q^{4}T^{8}\right]$ 4) $\left[M^{-3}L^{-2}Q^{4}T^{4}\right]$

70. The frequency of vibration f of a mass m suspended from a spring of spring constant k is given by a relation of the type $f = cm^x k^y$, where c is a dimensionless constant. The values of x and y are

1) $x = \frac{1}{2}, y = \frac{1}{2}$ 2) $x = -\frac{1}{2}, y = -\frac{1}{2}$ 3) $x = \frac{1}{2}, y = -\frac{1}{2}$ 4) $x = -\frac{1}{2}, y = \frac{1}{2}$

NEET PREVIOUS YEARS QUESTIONS

- 1. A student measured the diameter of a small steel ball using a screw gauge of least count 0.001cm. The main scale reading is 5mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of -0.004cm, the correct diameter of the ball is (2018) 1) 0.521cm 2) 0.525cm 3) 0.529cm 4) 0.053 cm
- 2. A physical quantity of the dimensions of length that can be formed out of c, G and $\frac{e^2}{4\pi\varepsilon_0}$ is (c is velocity

of light, G is universal constant of gravitation and e is charge) (2017)

1) $c^2 \left[G \frac{e^2}{4\pi\varepsilon_0} \right]^{1/2}$ 2) $\frac{1}{c^2} \left[\frac{e^2}{G4\pi\varepsilon_0} \right]^{1/2}$ 3) $\frac{1}{c} G \frac{e^2}{4\pi\varepsilon_0}$ 4) $\frac{1}{c^2} \left[G \frac{e^2}{4\pi\varepsilon_0} \right]^{1/2}$

3. If dimensions of critical velocity v_c of a liquid flowing through a tube are expressed as $\left[\eta^x \rho^y r^x\right]$, where η , ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x, y and z are given by (2015)

1) -1,-1,1 2) -1,-1,-1 3) 1,1,1 4) 1,-1,-1

4. If energy (E), velocity (V) and time (T) are chosen as the fundamental quantities the dimensional formula of surface tension will be (2015)

1) $\begin{bmatrix} EV^{-1}T^{-2} \end{bmatrix}$ 2) $\begin{bmatrix} EV^{-2}T^{-2} \end{bmatrix}$ 3) $\begin{bmatrix} E^{-2}V^{-1}T^{-3} \end{bmatrix}$ 4) $\begin{bmatrix} EV^{-2}T^{-1} \end{bmatrix}$

5. If force (F), velocity (V) and time (T) are taken as fundamental units, then the dimensions of mass are : (2014)

1) $\left[FVT^{-1}\right]$ 2) $\left[FVT^{-2}\right]$ 3) $\left[FV^{-1}T^{-1}\right]$ 4) $\left[FV^{-1}T\right]$

Phys	sics Smart Booklet				
6.	In an experiment, th		occurred in the measure Then the maximum per		
	where $X = \frac{A^2 B^{1/2}}{C^{1/3} D^3}$,	will be:		(NEET-2019)
	$(1)\left(\frac{3}{13}\right)\%$	(2) 16%	(3) –10%	(4) 10%	
7.	1) divisions of main	scale. The least cour	divisions/cm. n division nt of the vernier calliper	is, [NEET – 20]	
	1) $\frac{1}{(n+1)(n-1)}cm$	$(n-2)\frac{1}{n}cm$	$3) \ \frac{1}{n^2} cm$	$4)\frac{1}{n(n+1)}cm$	
8.	The angle of 1' (minu	te of arc) in radian is	nearly equal to	(NEET-2	020 COVID-19
9.		red by a clock give th	(3) 4.80×10^{-6} rad ne following readings:	(4) 1.75×10^{-2} rad	
10	What is the percentage (1) 2 %	ge relative error of the (2) 4 %	e observations? (3) 16 %	(NEET-2) (4) 1.6 %	020 COVID-19)
10.	Dimensions of stress 1) $\left[ML^{-1}T^{-2}\right]$	are: (NEET-2020) $2) \left[MLT^{-2} \right]$	$3) \left[ML^2T^{-2} \right]$	$4) \left[ML^0 T^{-2} \right]$	
11.	Taking into account 1) 9.9 m	t of the significant fig 2) 9.9801m	ures, what is the value if 3) 9.98m	79.99m – 0.0099m? 4) 9.980m	(NEET-2020)
12.	dimensions of energ	gy.	T] are chosen as the fur		antities. Find the [NEET-2021]
	$1)[F][A][T^2]$	$2)[F][A][T^{-1}]$	$3) \left[F \right] \left[A^{-1} \right] \left[T \right]$	4) [F][A][T]	
13.	Main scale reading: Circular scale reading given that 1 mm on wire from the above	0 nm ng: 52 divisions main scale correspon e data is	ngs when used to measureds to 100 divisions on the	ne circular scale. The c	
	1) 0.026 cm	2) 0.26 cm	3) 0.052 cm	4) 0.52 cm	
14.	If E and G respective	vely denote energy an	d gravitational constant,	then $\frac{L}{C}$ has the dimen	sions of:

[NEET-2021]
1.
$$[M][L^{-1}][T^{-1}]$$
2. $[M][L^0][T^0]$
3. $[M^2][L^{-2}][T^{-1}]$
4. $[M^2][L^{-1}][T^0]$
15. The dimensions $[MLT^{-2}A^{-2}]$ belong to the:

[NEET-2022]

15.

[NEET-2022]

1) Magnetic flux

2) Self inductance

3) Magnetic permeability

4) Electric permittivity

Plane angle and solid angle have: 16.

[NEET-2022]

1) Units but no dimensions

2) Dimensions but no units

3) No units and no dimensions

4) Both units and dimensions

17. The area of a rectangular field (in m2) of length 55.3 m and breadth 25 m after rounding ff the value for correct significant digits is: [NEET-2022]

(1) 138×10^1

(2) 1382

(3) 1382.5 (4) 14×10^2

18. Match List-I with List-II [NEET-2022] List-II List-I

- a) Gravitational constant (G)
- b) Gravitational Potential energy

c) Gravitational Potential

d) Gravitational intensity

Choose the correct answer from the options given below

d

iii

- a b c ii
 - - i
- iii iv
- 2) ii 3) ii

iv

1)

4)

ii

- iv iv
 - iii i

i

i iii

NCERT LINE BY LINE QUESTIONS – ANSWERS

1) d	2) c	3) a	4) 2	5) d	6) a	7) c	8) d	9) b	10) c
11) a	12) c	13) c	14) d	15) d	16) a	17) b	18) a	19) c	20) b
21) a	22) d	23) d	24) 1	25) c	26) d	27) c	28) a	29) a	30) b

NCERT BASED PRACTICE QUESTIONS - ANSWERS

1) c	2) a	3) c	4) b	5) b	6) a	7) a	8) c	9) a	10) d
11) c	12) b	13) b	14) c	15) d	16) b	17) c	18) a	19) a	20) b
21) c	22) b	23) a	24) c	25) c	26) b	27) d	28) d	29)c	30) a
31) a	32)c	33)b	34)a	35)a	36) b	37)d	38)d	39)a	40)a

TOPIC WISE PRACTICE QUESTIONS - ANSWERS

1) 3	2) 4	3) 3	4) 4	5) 1	6) 1	7) 2	8) 4	9) 1	10) 3
11)2	12) 2	13) 2	14) 3	15) 3	16) 2	17) 3	18) 4	19)2	20) 3
21) 1	22) 3	23) 3	24) 3	25) 2	26) 4	27) 2	28) 3	29) 3	30) 1
31) 3	32) 2	33) 3	34) 3	35) 3	36) 2	37) 2	38) 1	39) 3	40) 3
41) 4	42) 1	43) 4	44) 3	45) 1	46) 1	47) 1	48) 2	49) 4	50) 4
51) 3	52) 3	53) 4	54) 3	55) 2	56) 1	57) 4	58) 1	59) 3	60) 2
61) 1	62) 2	63) 1	64) 2	65) 3	66) 1	67) 1	68) 1	69) 4	70) 4

NEET PREVIOUS YEARS QUESTIONS-ANSWERS

1) 3	2) 4	3) 4	4) 2	5) 4	6) 2	7) 3	8) 2	9) 4	10) 1
11)3	12) 1	13)3	14) 4	15) 3	16) 1	17) 4	18) 2		

TOPIC WISE PRACTICE QUESTIONS - SOLUTIONS

1) 3)
$$R = \rho \frac{l}{A} : \rho = \frac{RA}{l}$$

- 2) 4) Temperature is one of the basic physical quantities
- 3) 1) Potential is work done per unit charge

4) 4) conductance,
$$G = \frac{1}{resis \tan ce} = mho(\Omega^{-1}) or Siemen(S)$$

5) 1) From Biot Savart's law

$$B = \frac{\mu_0}{4\pi} \frac{idl \sin \theta}{r^2}$$

$$\mu_0 = \frac{4\pi Br^2}{i dl \sin \theta} = \frac{Wbm^{-2}m^2}{Am} = WbA^{-1}m^{-1}$$

6) 1) The henry (symbolized H) is the Standard International (SI) unit of coefficient of mutual inductance of a coil

- 7) 2) 1 Dyne = 10^{-5} N and 1 cm = 10^{-2} m so, S = 70 dyne/cm= $\frac{70 \times 10^{-5} \text{ N}}{10^{-2} \text{ m}} = 70 \times 10^{-3} \text{ N/m} \Rightarrow \text{S} = 7 \times 10^{-2} \text{ N/m}$
- 8) 4) Joule second is the unit of angular momentum
- 9) 1) Stefan Boltzman constant = $Wm^{-2}k^{-4} = w/m^2k^4$
- 10) 3) It is given that Young's modulus (Y) is

$$Y = 1.9 \times 10^{11} N / m^2$$

$$1N = 10^5 \text{ dyne}$$

$$Y = 1.9 \times 10^{11} \times 10^5 \, dyne / m^2$$

Convert meter to centimeter : 1m = 100cm

$$Y = 1.9 \times 10^{11} \times 10^5 \, dyne / (100)^2 \, cm^2 = 1.9 \times 10^{12} \, dyne / cm^2$$

11) 2) the unit of the Electric field is N/C or V/m.

The unit of the magnetic field is Weber.

The unit of power is Watt.

The unit of the Capacitance is Farad.

12) 2)
$$\frac{N}{m^2} = \frac{10^5 \, dynes}{10^4 \, cm^2} = 10 \, dynes / \, cm^2 = 10 \, \beta$$

13) 2) As
$$\frac{a}{V^2} = P$$

$$\therefore a = PV^2 = \frac{dyne}{cm^2} (cm^3)^2 = dyne \times cm^4$$

14) 3)
$$n_2 = 100 \left(\frac{gm}{10^3 gm}\right)^1 \left(\frac{cm}{m}\right)^1 \left(\frac{\sec}{\min}\right)^{-2} = 100 \left(\frac{gm}{10^3 gm}\right)^1 \left(\frac{cm}{10^2 cm}\right)^1 \left(\frac{\sec}{60 \sec}\right)^{-2}$$

$$n_2 = \frac{3600}{10^3} = 3.6$$

- 15. 3) $\frac{eV}{T} = \frac{W}{T} = \frac{PV}{T} = R$ and $\frac{R}{N} = \text{Boltzmann constant}$
- 16. 2) Trigonometric ratios are a number and hence unit less
- 17. 3) Unit of $x = bt^2$. Hence unit of $b = x/t^2 = km/s^2$
- 18. 4) the correct unit of surface tension is newton/metre
- 19. 2) The work done = force \times displacement $\therefore unit$, $u_1 = Fs$ and $u_2 = 4F \times 4s = 16u$

20. 3)
$$n_1 u_1 = n_2 u_2$$
; $\therefore n_2 = n_1 \frac{u_1}{u_2} = 8 \left[\frac{1}{20} \right] \left[\frac{5}{1} \right]^3 = 50$

21. 1) Random errors cannot be eliminated altogether even after taking utmost care. It can only be reduced by taking more number of observations

22. 3)
$$V = \frac{4}{3}\pi r^3$$
; $\frac{\Delta V}{V} \times 100 = 3\left(\frac{\Delta r}{r}\right) \times 100 = 3 \times 1\% = 3\%$

- 23. 3) Maximum absolute error is $\Delta a + \Delta b$. Therefore the percentage error = $\frac{absolute\ error}{actual\ value} \times 100$
- 24. 3) In multiplication or division the final result should return as many significant figures as there are in the original number with the least significant figures.
- 25. 2) in a product, percentage errors are added up

26. 4)
$$V = \frac{m}{d} \Rightarrow \frac{\Delta V}{V} \times 100 = \frac{\Delta m}{m} \times 100 + \frac{\Delta d}{d} \times 100 = 3\% + 1\% = 4\%$$

- 27. 2)The significant number in the potential, V = iR; should be the minimum of either i or R. So corresponding to
 - i=3.23A, we have only three significant numbers in V=35.02935V. Thus the result is V=35.0V
- 28. 3) Momentum of the body is $mv = 3.513 kg \times 5.00 m/s = 17.565 kg m/s$

However, the accuracy of the result would be determined by the most inaccurate observation, which is speed with three significant digits. Thus the answer would be expressed in three significant digits, that is, 17.6 kgm/s

29. 3) From
$$T = 2\pi \sqrt{\frac{l}{g}}$$
; $g = 4\pi^2 \frac{l}{T^2}$
$$\frac{\Delta g}{g} = \frac{\Delta l}{l} + \frac{2\Delta T}{T} = (y + 2x)$$

30) 1) % error =
$$\frac{0.01}{0.5} \times 100 + \frac{0.01}{1.0} \times 100 + \frac{0.01}{0.5} \times 100 = 2 + 1 + 2 = 4 + 1 = 5$$

- 31. 3) $l_1 l_2 = (3.323 \pm 0.001) (3.321 \pm 0.001) = (0.002 \pm 0.002) cm$
- 32. 2) Relative density = $\frac{\text{Weight of body in air}}{\text{Loss of weight in water}} = \frac{5.00}{5.00 4.00} = \frac{5.00}{1.00}$

$$\frac{\text{Weight of body in air}}{\text{Loss of weight in water}} = \frac{5.00}{5.00 - 4.00} = \frac{5.00}{1.00}$$

$$\frac{\Delta \rho}{\rho} \times 100 = \left(\frac{0.05}{5.00} + \frac{0.05}{1.00}\right) \times 100 = \left(0.01 + 0.05\right) \times 100 = 0.06 \times 100 = 6\%$$

- \therefore Relative density = $5.00 \pm 6\%$
- 33. 3) $X = M^x L^{-y} T^{-z}$

$$\therefore \frac{\Delta X}{X} \times 100 = x \left(\frac{\Delta M}{M} \times 100 \right) + y \left(\frac{\Delta L}{L} \times 100 \right) + z \left(\frac{\Delta T}{T} \times 100 \right)$$

(Errors are always added)

$$\therefore \frac{\Delta X}{X} \times 100 = (ax + by + cz) \text{ per cent}$$

34. 3)
$$E = \frac{1}{2}mv^2$$

$$\therefore \frac{\Delta E}{E} \times 100 = \frac{\Delta m}{m} \times 100 + 2\frac{\Delta V}{V} \times 100 = 2\% + 2 \times 3\% = 8\%$$

35. 3) The percentage error =
$$\frac{1}{5} \times \frac{100}{25} = 0.8\%$$

36. 2) thickness of wall =
$$=\frac{1}{2}(4.23-3.87)\pm(0.01+0.01)$$

37. 2)
$$r = \frac{1.933}{2} = 0.9665 \approx 0.966cm$$

38. 1) percentage error in
$$X = a\alpha + b\beta + c\gamma$$

39. 3)
$$T = 2\pi \sqrt{\frac{l}{g}}, g \propto \frac{l}{T^2}$$

$$\therefore \frac{\Delta g}{g} \times 100 = 0.3\% + 2 \times 0.1\% = 0.5\%$$

- 40. 3) Relative error in surface area, $\frac{\Delta s}{s} = 2 \times \frac{\Delta r}{r} = \alpha$ and relative error in volume, $\frac{\Delta v}{v} = 3 \times \frac{\Delta r}{r}$
 - ∴ relative error in volume w.r.t relative error in area

$$\frac{\Delta v}{v} = \frac{3}{2}\alpha$$

41. 4) Density = Mass/Volume

$$\rho = \frac{M}{L^3}, \frac{\Delta \rho}{\rho} = \frac{\Delta M}{M} + 3\frac{\Delta L}{L}$$

% error in density = % error in Mass + 3 (% error in length) = 4+3(3) = 13%

42. 1) The mean value of refractive index, $\mu = \frac{1.34 + 1.38 + 1.32 + 1.36}{4} = 1.35$ and

$$\Delta \mu = \frac{\left| (1.35 - 1.34) \right| + \left| (1.35 - 1.38) \right| + \left| (1.35 - 1.32) \right| + \left| (1.35 - 1.36) \right|}{4} = 0.02 \text{ thus}$$

$$\frac{\Delta\mu}{\mu} \times 100 = \frac{0.02}{1.35} \times 100 = 1.48$$

43. 4)density, $\rho = \frac{M}{V} = \frac{M}{\pi r^2 l}$

$$\therefore \frac{\Delta \rho}{\rho} \times 100 = \left[\frac{\Delta M}{M} + \frac{2\Delta r}{r} + \frac{\Delta l}{l} \right] \times 100 = \left[\frac{0.003}{0.3} + 2\frac{0.005}{0.5} + \frac{0.06}{6} \right] \times 100 = 4$$

44. 3)
$$\frac{\Delta P}{P} \times 100 = \frac{\Delta F}{F} \times 100 + 2\frac{\Delta l}{l} \times 100 = 4\% + 2 \times 2\% = 8\%$$

45. 1) Since percentage increase in length = 2% Hence, percentage increase in area of square sheet = $2\times2\%=4\%$

46. 1)
$$\sin \theta = \sqrt{\frac{I}{I_0}}$$

Differentiating the above equation,

$$\cos\theta d\theta = \frac{1}{2} \frac{1}{I^{3/2} I_0^{1/2}} \qquad \text{thus} \qquad d\theta = \frac{1}{2I} \tan\theta dI \Rightarrow \frac{d\theta}{\theta} = \frac{\tan\theta dI}{2\theta I} \text{ put} \qquad \theta = 30 \times \frac{\pi}{180} \text{ radians, } dI = 0.002, I = 5, \text{ thus} \qquad d\theta = \frac{1}{2I} \tan\theta dI \Rightarrow \frac{d\theta}{\theta} = \frac{\tan\theta dI}{2\theta I} \text{ put} \qquad \theta = 30 \times \frac{\pi}{180} \text{ radians, } dI = 0.002, I = 5, \text{ thus} \qquad d\theta = \frac{1}{2I} \tan\theta dI \Rightarrow \frac{d\theta}{\theta} = \frac{\tan\theta dI}{2\theta I} \text{ put} \qquad \theta = 30 \times \frac{\pi}{180} \text{ radians, } dI = 0.002, I = 5, \text{ thus} \qquad d\theta = \frac{1}{2I} \tan\theta dI \Rightarrow \frac{d\theta}{\theta} = \frac{\tan\theta dI}{2\theta I} \text{ put} \qquad \theta = 30 \times \frac{\pi}{180} \text{ radians, } dI = 0.002, I = 5, \text{ thus} \qquad d\theta = \frac{1}{2I} \tan\theta dI \Rightarrow \frac{d\theta}{\theta} = \frac{\tan\theta dI}{2\theta I} \text{ put} \qquad \theta = 30 \times \frac{\pi}{180} \text{ radians, } dI = 0.002, I = 5, \text{ thus} \qquad d\theta = \frac{1}{2I} \tan\theta dI \Rightarrow \frac{d\theta}{\theta} = \frac{\tan\theta dI}{2\theta I} \text{ put} \qquad \theta = 30 \times \frac{\pi}{180} \text{ radians, } dI = 0.002, I = 5, \text{ thus} \qquad d\theta = \frac{1}{2I} \tan\theta dI \Rightarrow \frac{d\theta}{\theta} = \frac{\tan\theta dI}{2\theta I} \text{ put} \qquad \theta = 30 \times \frac{\pi}{180} \text{ radians, } dI = 0.002, I = 5, \text{ thus} \qquad d\theta = \frac{1}{2I} \tan\theta dI \Rightarrow \frac{d\theta}{\theta} = \frac{\tan\theta dI}{2\theta I} \text{ put} \qquad d\theta = \frac{1}{2I} \tan\theta dI \Rightarrow \frac{d\theta}{\theta} = \frac{\tan\theta dI}{2\theta I} \text{ put} \qquad d\theta = \frac{1}{2I} \tan\theta dI \Rightarrow \frac{d\theta}{\theta} = \frac{\tan\theta dI}{2\theta I} \Rightarrow \frac{d\theta}{\theta} = \frac{d\theta}{\theta} = \frac{\tan\theta dI}{2\theta I} \Rightarrow \frac{d\theta}{\theta} = \frac{d\theta}{\theta} \Rightarrow \frac{d\theta}{\theta} = \frac{d\theta}{\theta} \Rightarrow \frac{d\theta}{\theta} = \frac{d\theta}{\theta} \Rightarrow \frac$$

percentage error in angle = $\frac{d\theta}{\theta} \times 100\% = \frac{4\sqrt{3}}{\pi} \times 10^{-2}\%$

Given that: $f = x^2$

Hence,
$$\frac{df}{dx} = 2x$$

Therefore:
$$\Delta f = \frac{df}{dx} \Delta x = 2x\Delta x$$

The relative error in f is:

$$\frac{\Delta f}{f} = \frac{2x\Delta x}{x^2}$$

$$\frac{\Delta f}{f} = \frac{2\Delta x}{x}$$

48. 2) Density is the ratio of mass and volume D = m/V

$$V = m/d$$

$$V = 210/7.981$$

$$V = 26.312 \text{cm}^3$$

The LEAST number of significant figures in any number of the problem determines the number of significant figures in the answer. So the answer is 26.3

- 49. 4) Electric flux $\phi_E = \overrightarrow{E}.\overrightarrow{S}$: dimensionally $\phi_E \neq E$
- 50. 4) Gravitational constant also known as universal gravitational constant has a symbol G and has a dimension $\lceil M^{-1}L^3T^{-2} \rceil$ while others are dimensionless constant.
- 51. 3) We know that $\frac{Q^2}{2C}$ is energy of capacitor so it represent the dimension of energy = $\left[ML^2T^{-2}\right]$

52. 3)
$$\frac{h}{e^2} = \frac{ML^2T^{-1}}{(AT)^2} = ML^2T^{-3}A^{-2} = \text{Resistance (ohm)}$$

53. 4) Energy incident per unit area per second

$$=\frac{Energy}{area \times \sec ond} = \frac{ML^2T^{-2}}{L^2T} = MT^{-3}$$

54. 3) $X = Force \times density$

$$\left[MLT^{-2}\right]\frac{\left[M\right]}{\left[L^{3}\right]} = \left[M^{2}L^{-2}T^{-2}\right]$$

55. 2) Mutual inductance = $\frac{\phi}{I} = \frac{BA}{I}$

$$[Henry] = \frac{[MT^{-1}Q^{-1}L^2]}{[QT^{-1}]} = ML^2Q^{-2}$$

- 56. 1) Impulse = change in momentum
- 57. 4) $[V] = \left[\frac{W}{Q}\right] = \frac{ML^2T^{-2}}{AT} = ML^2A^{-1}T^{-3}$
- 58. 1) Energy stored in an inductor = $\frac{1}{2}Li^2 = \left[ML^2T^{-2}\right]$
- 59. 3) $u = initial \ velocity = \left[M^0L^1T^{-1}\right]$ The dimension of $S_{n^{th}}$ is same as that of $u \times 1$ sec .Hence, $\left[M^0L^1T^0\right]$
- 60 2) $\frac{\text{aV}}{\text{RT}} = \text{dimensionless} \Rightarrow \text{a} \propto \frac{\text{RT}}{\text{V}}$(1)

Now, $\frac{RT}{v-b} \propto \frac{RT}{v} \propto p$ (dimensionally).....(2)Hence, from (1) and (2) dimension of a is same as P.

61. 1) Let mass, related as $M \propto T^x C^y h^z$

$$M^{l}L^{0}T^{0} = \left(T^{'}\right)^{x} \left(L^{l}T^{-l}\right)^{y} \left(M^{l}L^{l}T^{-l}\right)^{z}$$

$$M^{1}L^{0}T^{0} = M^{z}L^{y+z} + T^{x-y-z}$$

$$z = 1, y + z = 0, y = -1$$

$$x - y - z = 0 \quad x = 0$$

$$\mathbf{M} = \left[\mathbf{C}^{-1} \mathbf{h} \right]$$

62. 2) From
$$K = \frac{Bx}{x^2 + A^2} = \frac{Bx}{x^2} = \frac{B}{x}$$

$$\therefore \mathbf{B} = \mathbf{K} \times \mathbf{x} = \mathbf{K}.\mathbf{E}.\times \mathbf{distance} = \mathbf{work} \times \mathbf{distance}$$

63. 1)
$$R = \frac{PV}{\mu T} = \frac{W}{\mu T} = \frac{ML^2T^{-2}}{mol K} = \left[M^1L^2T^{-2}K^{-1}mol^{-1}\right]$$

64. 2) The dimensions of the two sides of pro portionality are $L^3 = L^{2\alpha} \left(L T^{-1} \right)^{\beta} T^{\gamma} = L^{2\alpha+\beta} T^{\gamma-\beta}$

Equating the powers of dimensions on both sides, we

have
$$2\alpha + \beta = 3\gamma - \beta = 0$$

which gives $\beta \square \gamma$ and $\alpha = 1/2$ $(3 - \beta)$, i.e. $\alpha \neq \beta = \gamma$.

- 65.
- 66. 1) Here, at is dimensionless

$$\Rightarrow a = \frac{1}{t} = \left[\frac{1}{T}\right] = \left[T^{-1}\right] \text{ and } V_0 = xa = \left[LT^{-1}\right] = \left[M^0LT^{-1}\right]$$

67. 1)
$$S = \frac{F}{I} = \frac{mLT^{-2}}{I} = m^1L^0T^{-2}$$

68. 1) As c is added to t, \therefore c = [T]

$$a = \frac{v}{t} = \frac{LT^{-1}}{T} = [LT^{-2}], b = v(t+c) = LT^{-1} \times T = [L]$$

69. 4)
$$[Y] = \frac{[X]}{[Z^2]} = \frac{M^{-1}L^{-2}T^4A^2}{M^2T^{-4}A^{-2}} = M^{-3}L^{-2}Q^4T^4$$

70. 4) $f = cm^x k^y$;

Spring constant k = force/length.

$$\left[M^{0}L^{0}T^{-1}\right] = \left[M^{x}\left(MT^{-2}\right)^{y}\right] = \left[M^{x+y}T^{-2y}\right] \Rightarrow x + y = 0, -2y = -1 \text{ or } y = \frac{1}{2} \text{ and } x = -\frac{1}{2}$$

NEET PREVIOUS YEARS QUESTIONS-EXPLANATIONS

- 1. 3) Diameter of the ball = MSR + CSR \times (*l* east count) zero error = $0.5 \text{cm} + 25 \times 0.001 (-0.004) = 0.5 + 0.025 + 0.004 = 0.529 \text{ cm}$
- 2. 4) Let dimensions of length is related as,

$$L = \left[c\right]^{x} \left[G\right]^{y} \left[\frac{e^{2}}{4\pi\varepsilon_{0}}\right]^{z}$$

$$\frac{e^2}{4\pi\varepsilon_0} = ML^3T^{-2}$$

$$L = \left\lceil LT^{-1} \right\rceil^x \left\lceil M^{-1}L^3T^{-2} \right\rceil^y \left\lceil ML^3T^{-2} \right\rceil^z$$

$$[L] = [L^{x+3y+3z}M^{-y+z}T^{-x-2y-2z}]$$

Comparing both sides

$$-y + z = 0 \Rightarrow y = z \dots (i)$$

$$x + 3y + 3z = 1$$
(ii)

$$-x - 4z = 0$$
 (: $y = z$).....(iii)

From (i), (ii), (iii)

$$Z = y = 1/2, x = -2$$

Hence, L =
$$c^{-2} \left[G \cdot \frac{e^2}{4\pi\varepsilon_0} \right]^{1/2}$$

3. (4) Applying dimensional method:

$$\mathbf{v}_{c} = \boldsymbol{\eta}^{x} \boldsymbol{\rho}^{y} r^{z}$$

$$\lceil M^{0}LT^{-1} \rceil = \lceil ML^{-1}T^{-1} \rceil^{x} \lceil ML^{-3}T^{0} \rceil^{y} \lceil M^{0}LT^{0} \rceil^{z}$$

Equating power both sides

$$x + y = 0; -x = -1 : x = 1$$

$$1+y=0: y=-1; -x-3y+z=1$$

-1-3(-1)+z=1; -1+3+z=1

$$\therefore z = -1$$

4) b) let surface tension

$$s = E^a V^b T^c$$

$$\frac{MLT^{-2}}{L} = \left(ML^2T^{-2}\right)^a \left(\frac{L}{T}\right)^b \left(T\right)^C$$

Equating the dimension of LHS and RHS

$$ML^{0}T^{-2} = M^{a}L^{2a+b}T^{-2a-b+c}$$

$$\Rightarrow a = 1, 2a + b = 0, -2a - b + c = -2 \Rightarrow a = 1, b = -2, c = -2$$

Hence, the dimensions of surface tension are $\left[EV^{-2}T^{-2}\right]$

5. 4) Force = mass × acceleration
$$\Rightarrow [Mass] = \left[\frac{force}{acceleration}\right] = \left[\frac{force}{velocity/time}\right] = \left[FV^{-1}T\right]$$

$$x = \frac{A^2 B^{1/2}}{C^{1/3} D^3}$$

$$\frac{\Delta x}{x} = \frac{2\Delta A}{A} + \frac{1}{2}\frac{\Delta B}{B} + \frac{1}{3}\frac{\Delta C}{C} + 3\frac{\Delta D}{D}$$

$$\frac{\Delta x}{x} \times 100 = 2(1\%) + \frac{1}{2}(2\%) + \frac{1}{3}(3\%) + 3(4\%) = 16\%$$

$$n(VSD) = (n-1)MSD$$

$$\Rightarrow 1 VSD = \frac{(n-1)}{n} MSD$$

Least count =
$$1 MSD - 1 VSD = \left[1 - \frac{(n-1)}{n}\right]$$

$$MSD = \frac{1}{n}MSD$$

$$=\frac{1}{n}(\frac{1}{n})cm$$

$$=\frac{1}{n^2}cm$$

8. 1)1' =
$$\left(\frac{1}{60}\right)^0 = \frac{1}{60} \times \frac{\pi}{180}$$
 radian

9. 4)Mean of observation =
$$\frac{1.25 + 1.24 + 1.27 + 1.21 + 1.28}{5} = 1.25$$
s

Mean absolute error =
$$\frac{0 + 0.01 + 0.02 + 0.04 + 0.03}{5} = 0.02s$$

% Error =
$$\frac{0.02}{1.25} \times 100 = 1.6\%$$

10. 1)DF of stress =
$$\frac{F}{A} = \frac{MLT^{-2}}{L^2}$$
; Stress = [ML⁻¹T⁻²]

11.
$$3)9.99 - 0.0099 = 9.99 - 0.009 = 9.981$$

Here minimum number of decimal places = 2

So other numbers should be rounded off up to 3 decimal places.

Answer should be rounded off up to '2' decimal places.

$$Ans = 9.98$$

12. 1)E = F.S
$$\Rightarrow$$
 S = $\frac{1}{2}at^2$; E = [FAT²]

13. 3)Reading = M.S.R +[C.S.R(L.C)] =0+ 52
$$\times \frac{1mm}{100}$$
 =0.052 cm

$$E = \frac{Gm_1m_2}{R}$$

$$\left[\frac{E}{G}\right] = \left[\frac{m^2}{R}\right] = \left[M^2 L^{-1} T^0\right]$$

15.: Magnetic permeability
$$\rho = MLT^{-2}A^{-2}$$

17.
$$A = L \times 6$$

$$=55.3 \times 25$$

$$=1382.5 m^2$$

$$=14\times10^{2}m^{2}$$

18. Gravitational Constant
$$G(M^{-1}L^3T^{-2})$$

Gravitational PE
$$(M^1L^2T^{-2})$$

Gravitational Potential
$$(M^0L^2T^{-2})$$

Gravitational Intensity
$$(L^1T^{-2})$$